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  Exogenous and endogenous cannabinoids have been reported to modulate 

functional activities of macrophages.  It is recognized that macrophages express primarily 

the CB2 cannabinoid receptor, but recent studies indicate that its expression is differential 

in relation to activation state with maximal levels occurring when cells are in 

“responsive” and “primed” states.  The functional activities of macrophages when in 

these states of activation are the most susceptible to the action of cannabinoids, at least in 

terms of a functional linkage to the CB2.  To assess the effect of cannabinoid treatment on 

macrophage chemotaxis and test the hypothesis that cannabinoids inhibit the chemotactic 

response of macrophages and microglia to endogenous and exogenous, pathogen-derived 
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stimuli, primary murine peritoneal macrophages and neonatal rat microglia were used.  

Chemotaxis assays and scanning electron microscopy studies demonstrated that 

cannabinoids inhibit chemotaxis, a signature activity attributed to “responsive” 

macrophage-like cells, to the endogenous chemokine RANTES (Regulated upon 

Activation Normal T-cell Expressed and Secreted) and to Acanthamoeba conditioned 

medium containing secreted proteases.  The partial agonist delta-9-tetrahydrocannabinol 

(THC), administered in vitro, inhibited the chemotactic response of peritoneal 

macrophages to the chemokine RANTES and to Acanthamoeba conditioned medium.  In 

vivo treatment with THC also resulted in inhibition of the in vitro chemotactic response 

of murine peritoneal macrophages to RANTES and amoebic conditioned medium.  

Pharmacological studies employing cannabinoid receptor agonists and antagonists 

demonstrated the involvement of CB2 in cannabinoid-mediated inhibition of peritoneal 

macrophage chemotaxis to RANTES and Acanthamoeba conditioned medium, implying 

that signaling through cannabinoid receptors may desensitize chemokine receptors.  

Treatment with cannabinoids had no apparent effect on chemokine receptor mRNA 

levels, but did enhance CCR5 protein phosphorylation.  Macrophage migration to 

Acanthamoeba conditioned medium may involve activation and signaling through 

protease activated receptors (PARs), as pathogen-derived proteases have been shown to 

activate PARs and initiate cellular migration; however, further studies are required to 

demonstrate PAR activation by amoebic conditioned medium and to assess the effects of 

cannabinoids on PAR signaling.       
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Acanthamoeba are opportunistic pathogens that cause Granulomatis amoebic 

encephalitis, an infection of the CNS that is often fatal.  THC treatment has been shown 

to increase mortality to Acanthamoeba infections and is characterized by an absence of 

granuloma formation.  We hypothesize that inhibitory effect of THC on macrophage 

migration may be a key factor in cannabinoid-mediated immunosuppression.  To assess 

the effect of cannabinoids on microglial migration to Acanthamoeba conditioned 

medium, chemotaxis assays were performed using primary rat microglia treated with 

cannabinoids. These studies demonstrated that cannabinoids inhibit microglial 

chemotaxis to amoebic conditioned medium.   

Furthermore, the studies demonstrate that cannabinoids, acting through 

cannabinoid receptors, may cross-talk with a diverse array G-protein coupled receptors so 

as to modulate responsiveness of macrophage and macrophage-like cells.     
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 Introduction 
 

Cannabis is one of the oldest and most widely used drugs in human history, with 

references to its use in ancient Chinese civilization dating to 2737 BC (Li, 1974).  

Medicinal use of cannabis continued freely in Western countries throughout the 1800s 

and into the mid-1900s.  However, in 1942, cannabis was withdrawn from the United 

States Pharmacopoeia (USP), a compendium published annually by the United States 

Pharmacopoeia Convention providing standardization of therapeutic drugs.  Great Britain 

and many other European countries prohibited cannabis use in 1971, by adopting policies 

proposed by the United Nations-led Convention on Psychotropic Substantces (Ben Amar, 

2006).   

The marijuana plant (Cannabis sativa) contains over 450 known chemicals 

including more than 60 pharmacologically active compounds called cannabinoids.  

Cannabinoids have been shown to elicit a variety of physiological effects including 

impairments of short-term memory, attention span, and motor function, in addition to 

numerous psychological effects including paranoia, altered perception, and hallucinations 

(Martin, 1986).  Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive 

component in marijuana.  This exogenous cannabinoid exerts a variety of modulatory 

effects on the immune system, the majority of which have been reported to be 

immunosuppressive (Klein et al., 1998; Cabral and Dove Pettit, 1998; Cabral and Staab, 

2005).  In this capacity, THC affects a diverse array of immune cell types, including B 
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lymphocytes (Klein et al., 1985), Natural Killer cells (Specter et al., 1986), T 

lymphocytes (Zimmerman et al., 1977), macrophages (Raz and Goldman, 1976; 

Friedman et al., 1986) and macrophage-like cells (Puffenbarger et al., 2000).  

Cannabinoid effects on cellular systems can occur by both receptor-mediated and non-

receptor-mediated modes (Makriyannis et al., 1990; Felder et al., 1992; Berdyshev et al. 

2001; Price et al., 2004).  In terms of receptor-mediated action, two cannabinoid 

receptors have been identified and linked to THC effects on immune function.  The first 

of these, CB1, is found at highest levels in the central nervous system (CNS) with 

expression in the hippocampus, basal ganglia, cerebral cortex, amygdala and cerebellum 

correlating with observed neurological effects of cannabinoids (Matsuda et al., 1990; 

Galiégue et al., 1995; Herkenham et al., 1991).  CB1 is present in the testis (Galiégue et 

al., 1995) and also at low levels in various immune cells (Galiégue et al., 1995; Daaka et 

al., 1996; Waksman et al., 1999). The second receptor, CB2, is found primarily in 

immune cells (Munro et al., 1993; Galiégue et al., 1995) and appears to play a major role 

in immune modulation (Klein et al., 1998; Cabral and Dove Pettit, 1998; Cabral and 

Staab, 2005).  Both cannabinoid receptors are members of a large receptor superfamily 

known as G-protein coupled receptors (GPCRs), and characteristically have seven 

transmembrane domains and initiate cellular signal transduction through coupling with G 

proteins.  Both CB1 and CB2 receptors are coupled to Gi/o proteins. Cannabinoid receptor 

signaling through these G proteins inhibits cyclic adenosine 3’,5’-monophosphate 

(cAMP) and subsequent activation of protein kinase A (PKA) and activates mitogen 

activated protein kinase (MAP kinase)(Berdyshev, 2000).  Cannabinoid receptor 
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signaling involves numerous second messengers and converges with multiple signal 

transduction pathways that are critical in the immune response.   

Of the various immune cell populations affected by THC and other cannabinoids, 

macrophages and macrophage-like cells appear to be a major target (Munro et al., 1993; 

Cabral et al., 1995; Waksman et al., 1999; Puffenbarger et al., 2000). Ultrastructural 

abnormalities have been observed in alveolar macrophages of humans who have been 

heavy users of marijuana (Mann et al., 1971) and in peritoneal macrophages of mice 

exposed in vitro to various concentrations of THC (Raz and Goldman, 1976).  Various 

functional defects of alveolar and peritoneal macrophages from humans, rats or mice 

following in vivo or in vitro exposure to marijuana or THC also have been reported. 

These alterations have included decreases in cell motility, ability to spread in vitro, 

release of β-glucuronidase, phagocytosis of yeast particles, and inactivation of 

Staphylococcus aureus and S. albus (Huber et al., 1975; Chari-Briton, 1976; McCarthy et 

al., 1976; Drath et al., 1979; Huber et al., 1978; Lopez-Cepero et al., 1986; Specter et al., 

1991; Tang et al., 1992).  In addition, THC has been reported to affect macrophage 

processing of soluble protein antigens (McCoy et al., 1995; 1999).  THC and other 

cannabinoids also have been shown to modulate the production of cytokine and 

chemokines by peripheral macrophages as well as microglia, the resident macrophages 

within the CNS (Klein et al., 2000; McCoy et al., 1995; Puffenbarger et al., 2000; 

Srivastava et al., 1998; Waksman et al., 1999; Zheng et al., 1992).   

 Macrophages play a critical role in both innate immunity as well as cell-mediated 

immunity.  The primary functions of these cells are to navigate to sites of tissue damage 
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or infection, phagocytose cellular debris or pathogens, and stimulate lymphocytes and 

other immune cells to respond to the pathogen.  Integral to this process is the recruitment 

of macrophages, which occurs early in the inflammatory process and is mediated by 

specific chemical stimuli.  This migratory activity is distinctive from that of stimulus-

independent random cellular motion (Lauffenburger and Horwitz, 1996; Mitchison and 

Cramer, 1996).  The two major modes of stimulus-dependent cellular motility are 

chemokinesis and chemotaxis. Chemokinesis is a process whereby cells exhibit random, 

non-directional motion that is dependent on a chemical stimulant (Becker, 1977; Keller et 

al., 1978).  On the other hand, chemotaxis is a process in which cell motility is directed 

toward a concentration gradient of a chemical stimulant (Harris, 1953, 1954; Jin and 

Hereld, 2006; Kehrl, 2006).  In this chemotactic process, macrophage interaction with 

chemoattractants not only initiates rapid and directed movement, but also is associated 

with a complex array of cellular events that includes changes in ion fluxes, alterations in 

integrin expression and avidity, production of superoxide anions, and secretion of 

lysosomal enzymes (Murdoch and Finn, 2000).  “Classical” chemoattractants include 

bacterial-derived N-formyl peptides, the complement fragment peptides C5a and C3a, 

and lipids such as leukotriene B4 and platelet-activating factor (Schiffman et al., 1975; 

Goldman and Goetzl, 1982; Hanahan, 1986; Gerard and Gerard, 1994).  Chemokines 

represent a second group of chemoattractants.  These secreted cytokines range from 8- to 

17-kD molecular mass and are selective for leukocytes in vitro, in addition to eliciting the 

accumulation of inflammatory cells in vivo (Baggiolini et al., 1994, 1997; Kim, 2004; Le 

et al., 2004).  Chemokines have been categorized into four groups on the basis of their N-
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terminal cysteine motifs - CXC (α-chemokines), CC (β-chemokines), CX3X (δ-

chemokines), and C (γ-chemokines) (Murphy, 2000) (Table 1).  As in the case for 

cannabinoid receptors, the specific effects of chemokines on target cells are mediated by 

G protein-coupled receptors (Murdoch and Finn, 2000; Charo and Ransohoff, 2006).  

Ligation of chemokines with their cognate receptors initiates a series of signal 

transductional events that results in regulation of leukocyte trafficking in inflammation, 

tissue injury, tumor development and host response to infection (Charo and Ransohoff, 

2006).  Correlative to chemokine nomenclature, four families of chemokine receptors 

have been defined based on the chemokines they bind (CC, CXC, CX3C, or C), followed 

by R for receptor and a number indicating the order in which they were discovered 

(Murphy, 2002) (Table 2).   

G protein coupled receptors have been reported to cross-talk through a process 

known as heterologous desensitization.  Chemokine receptor activity has been shown to 

be inhibited by the activation of numerous classes of GPCRs including opioid receptors 

and adenosine receptors (Zhang and Oppenheim, 2005).  Activation of one type of GPCR 

can result in the phosphorylation of cytosolic C-terminal residues of other GPCRs by G 

protein coupled receptor kinases (GRKs) or other second messenger kinases.  

Phosphorylated receptors are unable to couple to G proteins; therefore, subsequent ligand 

binding does not initiate signal transduction.  GPCR crosstalk may play an important role 

in the integration of diverse systems and the overall maintenance of immune homeostasis.  

Alternately, dysregulation of this crosstalk through the addition of exogenous compounds 

may constitute a significant element of drug-related immunosuppression.  For example, 
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opioid desensitization of chemokine receptors has been directly implicated in 

immunosuppression consequent of opioid use (Rogers et al., 2000).  Macrophages also 

play an important role in pathogen recognition and clearance, and appear to be the 

primary effector cell in the immune response against Acanthamoeba infection (Marciano-

Cabral et al., 2003).  The free-living amoebae of the genus Acanthamoeba are 

opportunistic pathogens with ubiquitous distribution.  These microorganisms have been 

isolated world-wide from varied environments including soil, sewage, hospitals, 

seawater, drinking water treatment plants, and contact lenses (Marciano-Cabral et al., 

2003).  Acanthamoeba spp. are also the causative agents of granulomatous amebic 

encephalitis (GAE), amebic keratitis and cutaneous amebiasis in humans.

 Granulomatous amebic encephalitis is a progressive infection of the CNS that is 

often fatal, especially in the immunocompromised.  Acanthamoeba access to the CNS 

may occur through the olfactory neuroepithelium following inhalation through the nasal 

passages or via hematogenous spread from a cutaneous lesion (Martinez et al., 1985). 

Pathological findings from fatal cases of GAE reveal inflammation and severe 

hemorrhagic necrosis. The latter is presumably caused by a combination of direct 

destruction of brain tissue by feeding amoeba, secretion of lytic factors by amoeba, and 

prolonged induction of inflammatory cytokines such as tumor necrosis factor-alpha 

(TNF-α) and interleukin-1 (IL-1) (Marciano-Cabral et al., 2000). 
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Table 1 – CC Chemokine Nomeclature 
 
Symbol Alternate Name(s) 
CCL1  TCA3, I-309 
CCL2  MCP-1 (monocyte chemotactant protein-1) 
CCL3  MIP-1α (macrophage inflammatory protein1-alpha) 
CCL4  MIP-1β (macrophage inflammatory protein1-beta) 
CCL5 RANTES (Regulated upon activation normal T cell expressed and 

secreted) 
CCL6  C10, MRP-1 (MIP-related protein-1) 
CCL7  MCP-3 (monocyte chemotactant protein-3) 
CCL8  MCP-2 (monocyte chemotactant protein-2) 
CCL9 MIP-1γ ( macrophage inflammatory protein1-gamma), MRP-2 (MIP-

related protein-2) 
CCL10  now CCL9 
CCL11  eotaxin 
CCL12  MCP-5 (monocyte chemotactant protein-5) 
CCL13  MCP-4 (monocyte chemotactant protein-4) 
CCL14  HCC1 (human CC chemokine 1) 
CCL15  MIP-5 (macrophage inflammatory protein-5), HCC-2  
CCL16  LEC (liver expressing chemokine), Mnt-1 (monotactin-1) 
CCL17  TARC (thymus and activation related chemokine) 
CCL18 MIP-4 (macrophage inflammatory protein-4), PARC (pulmonary and 

activation regulated chemokine) 
CCL19  MIP-3β (macrophage inflammatory protein3-beta) 
CCL20 MIP-3α (macrophage inflammatory protein3-alpha), LARC (liver 

activation regulated chemokine 
CCL21  6Ckine, SLC (secondary lymyphoid-tissue chemokine) 
CCL22  MDC (macrophage derived chemokine) 
CCL23 MIP-3 (macrophage inflammatory protein-3), MPIF-1 (myeloid progenitor 

inhibitory factor-1) 
CCL24 eotaxin-2, MPIF-2 (myeloid progenitor inhibitory factor-2) 
CCL25 TECK 
CCL26 MIP-4α (macrophage inflammatory protein4-alpha), eotaxin-3 
CCL27 CTAK (cutaneous T-cell attracting chemokine) 
CCL28 MEK (mucosal-associated epithelial chemokine) 
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Table 2- CC Chemokines and Chemokine Receptors 
 
 
Receptor  Ligand(s)    Primary Functions 
 
CCR1                          CCL3, CCL5, CCL7,   T cell and monocyte   

CCL8, CCL13-16, CCL23  migration, inflammation 
 
CCR2                          CCL2, CCL8, CCL7,    T cell and monocyte 

CCL13    migration, inflammation 
 
CCR3                          CCL5, CCL7, CCL8,    Eosinophil, basophil, T cell 

CCL11, CCL13, CCL15,   migration 
CCL24, CCL26 

 
CCR4                          CCL17, CCL22   T cell and monocyte 
   Migration 
 
CCR5                          CCL3, CCL4, CCL5,    T cell and monocyte  

CCL8, CCL14   migration 
 
CCR6                          CCL20   Dendritic cell migration 
 
CCR7                          CCL19, CCL21   T cell and dendritic cell 

  migration 
 
CCR8                          CCL1, CCL4, CCL14   T cell trafficking 
 
CCR9                          CCL25   T cell trafficking   
 
CCR10                        CCL26-28   T cell trafficking 
 
 
Adapted from Murphy et al., 2002.      
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 THC has been shown to increase host susceptibility to a wide variety of 

pathogenic bacteria, protozoa, and viruses (reviewed in Cabral and Dove Pettit, 1998).  

Experiments using an in vivo animal model of Acanthamoeba infections performed by 

Marciano-Cabral et al. (2001) demonstrated that (B6C3)F1 mice injected with THC and 

exposed to Acanthamoeba intranasally had a higher incidence of mortality compared with 

vehicle treated animals.  While macrophages are thought to be the primary immune cell 

involved in host response to Acanthamoeba infection, the specific effect of THC on 

macrophage function has not been fully defined.  Histopathological analysis of brain 

slices from mice and humans with GAE show the formation of immune cell granulomas, 

containing macrophages and neutrophils, surrounding the amoebae (Marciano-Cabral et 

al., 2003; Cabral et al., in press 2007).  These granulomas are conspicuously absent in 

THC-induced immunosuppression, indicating that THC may impair the macrophage 

migratory response.   

The goal of the present study was divided into three main objectives.  Initially, we 

sought to assess the effect of THC on the chemotactic response of murine peritoneal 

macrophages to RANTES/CCL5 (Regulated upon Activation Normal T cell Expressed 

and Secreted/ chemokine (C-C motif) ligand 5).  Next, we proposed to examine the 

migratory response of peritoneal macrophages to Acanthamoeba, and determine whether 

THC affected this response.  Finally, to expand the relevance of the previous studies we 

assessed the effect of THC on the migration of primary rat microglial cells to 

Acanthamoeba, thereby more closely modeling the process of a natural infection and 
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identifying a potential mechanism of THC-induced immunosuppression in CNS 

infections    

We demonstrate that THC inhibits the chemotactic response of murine peritoneal 

macrophages to RANTES, a cognate chemokine receptor ligand.  The inhibitory effect 

was shown to be linked functionally to the CB2, suggesting that cannabinoids can signal 

through this receptor to trans-deactivate the chemokine receptor-mediated migratory 

response.  Additionally, we show that peritoneal macrophages and microglia, the 

macrophages of the CNS, exhibit migration to Acanthamoeba and that this response is 

inhibited by THC.  While the immunosuppressive effects of THC are extensive and likely 

involve numerous cell types and complex mechanisms and/or pathways, these studies 

serve to define, at least in part, the mechanism by which THC suppresses macrophage 

function.   
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Materials and Methods 
 

 

Amoeba 

 Acanthamoeba culbertsoni (American Type Culture Collection, ATCC 30171, 

Manassas,VA) were cultured axenically in PYG medium containing 2% proteose 

peptone, 0.2% yeast extract, and 0.1M glucose at 37 oC.   

 Acanthamoeba sp. strain JH1 was isolated from an immunosuppressed patient at 

Johns Hopkins Hospital (Marciano-Cabral et al., 2003b).  This clinical isolate was 

obtained postmortem from a cutaneous lesion of an immune suppressed patient who had 

undergone a prior renal transplant.  Transmission electron microscopy studies identified 

the presence of gram negative rods within the cytoplasmic vacuoles of the amoeba.  

Acanthamoeba JH1 were cultured in Oxoid medium with serum and hemin and without 

antibiotics.   

 Amoeba conditioned medium (ACM) was obtained by culturing amoeba in PYG 

medium in 1L flasks at 37oC with constant agitation for 4 days.  The amoebae were 

harvested by centrifugation.  The pelleted amoebae (109) were suspended in 5 ml Hank’s 

Balanced Salt Solution (HBSS) and incubated at 37oC for 24 h.  The following day the 

cultures were centrifuged at 489 x g (2,500 RPM, Eppendorf 5810 R) for 20 min.  The 

supernatant was decanted and centrifuged again at 16100 x g (13,100 RPM, Eppendorf  

5415 D) for 10 min to remove any remaining debris and was designated amoeba 
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conditioned medium (ACM).  Protein concentration of ACM was determined by 

Bradford assay (Bradford, 1976).   

 

Cells 

Thioglycollate-elicited peritoneal macrophages were obtained by injecting 

BB6C3(F1) or C57BL/6 mice intraperitoneally with 1 ml 10% Brewer’s yeast 

thioglycollate. Five days later, cells were harvested by aseptic peritoneal lavage with 

HBSS supplemented with penicillin [200U/ml] and streptomycin [200 μg/ml].  The 

peritoneal exudate cells were screened for purity for macrophages by FACScan analysis 

using monoclonal antibody for the murine macrophage marker F4/80 (Serotec, 

Kidlington, Oxford, UK).  Cells that were greater than 95% positive for F4/80 were used 

in studies. Macrophages (10  /ml) in RPMI 1640 medium (Cellgro, Herndon, VA) 

lacking serum and supplemented with 1% L-glutamine, 1% nonessential amino acids, 1% 

MEM vitamins, 0.01M HEPES and penicillin [100 U/ml]/streptomycin [100 

μg/ml]/fungizone [0.25 μg/ml]) were used in chemotaxis assays.  

7

Primary microglia cultures were prepared from neonatal Sprague-Dawley (Zivik-

Miller Laboratory, Zeleinople, PA) rat pups (1-2 days postpartum).  Following sacrifice, 

the cerebral cortices were isolated and placed in dissection saline containing 2.8% (v/v) 

stock dissection HEPES (352mM HEPES in dH2O), 5% stock dissection saline (137 mM 

NaCl, 5.3mM KCl, 0.17mM Na2PO4-7H2O, 0.22 mM KH2PO4, and 0.0012g/L Phenol 

Red in dH2O), 5% stock Glucose/Sucrose solution (6g/L glucose, 15 g/L sucrose), and 

penicillin [100 U/ml]/streptomycin [100 μg/ml].  Subsequently, the surrounding 
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meninges were removed, the remaining tissue manually disrupted and incubated with 

porcine pancreas derived trypsin (Sigma) for 10 min.  The tissue homogenate was 

suspended in DMEM containing 10% FBS and supplemented with 1% L-glutamine, 1% 

nonessential amino acids, 1% MEM vitamins, 0.01M HEPES, and penicillin 

(100U/mL)/streptomycin (100μg/mL) and fungizone (0.25 μg/mL) (complete DMEM) 

and filtered through a 70μm nylon cell strainer.  The strained suspension then was 

centrifuged at 1,000 RPM for 30 min at 4oC.  The mixed glial cell suspension containing 

astrocytes and microglia were seeded in 172cm2 tissue culture flasks (Greiner, Monroe, 

NC) and cultured at 37oC and 5% CO2 in complete DMEM medium.  The medium was 

replaced the following day with warmed complete DMEM and the cells allowed to grow 

for 14-21 days.  To recover primary microglia, the mixed glial cultures were agitated at 

180 RPM on an orbital shaker for 2 h at 37oC.  Alternately, primary rat mixed glial 

cultures containing astrocytes and microglia were obtained from Dr. Jameel Dennis, 

Department of Anatomy and Neurobiology following immunopanning using anti-

oligodendrocyte antibodies to isolate oligodendrocytes from cortical cultures (Fox et al., 

2003).   

 

Mice 

Six to eight-week old female (B6C3)F1 and C57BL/6 mice were obtained from Taconic 

Laboratories (Hudson, NY). CB2 (-/-) mice on a C57BL/6 background were obtained 

from Dr. Nancy E. Buckley (California Polytechnic University, Pomona, CA).  CB2 

deficiency was confirmed by polymerase chain reaction (PCR) as described (Buckley et 
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al., 2000; Chuchawankul et al., 2004).  Phenotypic characterization was performed by 

Buckley et al. (2000) and reportedly CB2 knockout mice are healthy and fertile with no 

significant alterations in immune cell populations as measured by FACS analysis, 

indicating that the knockout did not affect immune cell development or differentiation.  

Therefore, peritoneal macrophages from these knockout mice should be phenotypically 

comparable to wild type peritoneal macrophages and any effect, or absence thereof, of 

cannabinoids on macrophage immune function should be the result of a measurable 

scientific phenomenon and not an artifact.   

Animals were quarantined for one week prior to initiation of experiments and 

were used as a source of peritoneal macrophages.  All animal procedures were conducted 

in accordance with guidelines established by the Virginia Commonwealth University 

Institutional Animal Care and Use Committee (IACUC).  

 
Drugs 

  Delta-9-tetrahydrocannabinol (THC; CB1 Ki = 40.7nM; CB2 Ki= 36.4 nM), a low 

efficacy agonist for CB1 and CB2, was obtained from the National Institute on Drug 

Abuse (Rockville, MD). Additional cannabinoid analogs included the CB1 and CB2 high 

efficacy agonist CP55940 (CB1 and CB2 Ki = 1.37 nM) and the highly selective CB2 

ligand O-2137-2 (CB1 Ki = 2,700nM, CB2 Ki = 11nM).  The highly selective CB1 agonist 

ACEA (CBB1 Ki = 1.4 nM) that displays > 1,400-fold selectivity over CB2 was purchased 

from Tocris Cookson, Inc. (Ellisville, MO).  The CB1 and CB2 antagonists SR141716 

(CB1 Ki =11.8 nM, CB2 Ki = 13,200 nM) and SR144528 (CB1 Ki = 437nM, CB2 Ki = 

0.6nM), respectively, were obtained from Sanofi Recherche (Montpellier, France).   
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The review by Howlett et al. (2002) provides a comprehensive summary of cannabinoid 

receptor ligand binding affinities and methodologies and was utilized in preparation of 

Table 3.  Ligand binding data was obtained from in vitro radiolabeled ligand 

displacement assays performed on membrane preparations from either from cell lines 

transfected with cloned receptors or tissues (brain tissue preparations for CB1 or spleen 

tissue preparations for CBB2).   

Stock solutions of cannabinoids (10-2M) were prepared in 100% ethanol and 

stored at –20oC.  Experimental concentrations were obtained by dilution of cannabinoid 

stock solutions in assay medium (RPMI-1640 for peritoneal macrophages or DMEM for 

primary microglia) to yield a final ethanol concentration of 0.01%.  Vehicle controls 

consisted of 0.01% ethanol in medium.  

 

Chemotaxis Assay 

 Chemotaxis was measured using transwell inserts pre-loaded in 35 mm standard 

tissue culture plates (Corning Inc., Corning, NY), in which the upper and lower 

compartments were separated by a polycarbonate filter with 8 μm pores (Corning Inc., 

Corning, NY).  Peritoneal macrophages (1x107 /ml) were pre-incubated in RPMI 1640 

lacking serum and containing vehicle (0.01% ethanol) or cannabinoid (10-6M – 10-12M) 

for 3 h at 4oC.  This time regimen for drug exposure was obtained through initial 

optimization experiments.  Serum was omitted from the culture medium since it contains 

lipids and other factors that have the capacity to stimulate macrophage migration that 

could confound interpretation of migratory responses as attributable to RANTES.  For  

   



www.manaraa.com

    16

Table 3- Cannabinoid Receptor Ligands 
 

 
Cannabinoid   Classification   Dissociation Constant (Ki) 
        CB1ki  CB2 ki
 
THC   Low efficacy CB1/CB2 agonist 40.7nM 36.4 nM 
 
CP55940  High efficacy CB1 and CB2 agonist 1.37nM 1.37nM 
 
ACEA   CB1 selective agonist   1.4nM  >2000nM 
 
O-2137  CB2 selective agonist   2,700nM 11nM 
 
SR141716A (SR1) CB1 selective antagonist  11.8nM 13200nM 
 
SR144528 (SR2) CB2 selective antagonist  437nM  0.6nM 
 

 
 
Abbreviations-  THC, (δ9-tetrahydrocannabinol); CP55940, ((-)-cis-3-[2-Hydroxy-4-(1,1-
dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol); ACEA, (N-(2-Chloroethyl)-
5Z,8Z,11Z,14Z-eicosatetraenamide); O-2137, ((1R,3R)-1-[4-(1,1-Dimethylheptyl)- 
2,6-dimethoxyphenyl]-3-methylcyclohexanol); SR141716A, (5-(4-Chlorophenyl)-1-(2,4-
dichlorophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide); SR144528, ((1S-endo)-5-(4-Chloro-3-
methyl-phenyl)-1-((4methylphenyl)methyl)-N-(1,3,3-trimethylbicyclo(2.2.1)hept-2-yl)-1H-pyrazole-3-
carboxamide) 
 
Adapted from Howlett et al., 2002
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experiments using antagonists, cells were exposed to SR141716A (SR1)(10-6M) or 

SR144528 (SR2)(10-6M) for 30 min prior to treatment with THC or CP55940 for 3h. 

Following vehicle or cannabinoid treatment, 100 μl of drug- or vehicle-treated cell 

suspension (106cells) were placed in the upper chamber of the transwell insert.  For 

assessment of chemotaxis (directed migration against a chemokine concentration 

gradient) the lower compartment was loaded (600μl) with medium containing murine 

RANTES (1 ng/ml; R&D Systems, Minneapolis, MN).  This concentration of RANTES 

was selected based on preliminary titration for a chemoattractant response that 

approximated a mid-point in the linear phase of the dose-response curve.  For assessment 

of chemokinesis (enhanced random migration to chemokine), RANTES (1 ng/ml) was 

included in both the top and bottom chambers to eliminate the chemoattractant 

concentration gradient.  In addition, for a select number of experiments, RANTES was 

eliminated from both chambers (Fig. 1).  The assembled migration plate chamber system 

was incubated (1-2 h) at 37oC in a 5%CO2 atmosphere.  To determine the number of cells 

that migrated to the bottom chamber, the upper chamber (i.e., polycarbonate filter) was 

removed and video still images (1mm2) in five random fields of each bottom chamber 

were captured using an Olympus CK2 inverted microscope (Opelco, Washington, DC) 

with an attached XV-GP230 digital video camera (Panasonic, Yokohama, Japan) 

interfaced to a Dell Dimension XPS1450 computer using Videum 100 hardware and 

Window NT software (Winnov, Sunnyvale, CA).  The number of cells migrating into the 

bottom compartment/transwell plate was manually enumerated and calculated as the sum 

of the five 1 mm2 fields and was represented as cells/mm2/well.  Each sample group was  
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Chemokinesis-
Enhanced Non-
directional 
Migration

ChemoattractantAssay medium

Transwell 
insert

Cells Cells
Cells + 
Chemoattractant

Chemoattractant

Random 
Migration

Chemotaxis-
Directional 
Migration

Figure 1- Transwell Migration Assay. Cells are loaded into transwell 
inserts and assessed for migration to the bottom well.  When the top and 
bottom wells contain assay medium only, any migration is random.  When 
the bottom well contains a chemoattractant, cell migration occurs in 
response to a concentration gradient.  This migration, chemotaxis, is 
compared to migration in which the chemoattractant substance is placed in 
both the top and bottom wells.  Under these conditiones, no concentration 
gradient exists and any migration that occurs as a response to exposure to a 
chemostimulus is called chemokinesis.  
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run in duplicate and each experiment was performed in triplicate.  Migration for each 

sample group was represented as the mean (±SD) of the total number of migrating cells 

counted in five fields of duplicate wells.  A greater than 2-fold increase in cell migration 

to the chemoattractant RANTES in the lower compartment as compared to that in the 

absence of RANTES in the lower compartment was indicative of a positive response. 

 

Immunoprecipitation of CCR5 

 Whole cell protein lysate (400 μg) in NP-40 lysis buffer containing protease 

inhibitors was precleared for 30 min using 0.25μg normal mouse control IgG (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA) and 20 μl Protein A/G Plus Agarose (Santa Cruz 

Biotechnology).  Precleared protein lysates were incubated with 2 μg CCR5 antibody 

(CKR5 D6, Santa Cruz Biotechnology) for 2h at 4oC, followed by 12h incubation (4oC) 

with Protein A/G PlusAgarose.  The beads were collected by centrifugation (3000 RPM, 

4oC, 1 min) and washed four times in room temperature phosphate-buffered saline.  The 

precipitates were resuspended in 40 μl electrophoresis sample buffer, heated for 3 min at 

95oC, and resolved on a 10% SDS-polyacrylamide gel.   

 

Isolation of Cannabinoid Receptor DNA from Plasmid Contructs 

 In order to obtain CB1 DNA to serve as a positive control in Real Time RT-PCR 

assays, DH5α E.coli transfected with a pCD mammalian expression vector containing 

SKR6 (rat CB1 DNA sequence) from Dr. L. Matsuda (Medical University of South 

Carolina, Matsuda et al., 1990) were cultured in LB broth containing ampicillin (100 
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μg/ml).  The pCD-SKR6 plasmid was isolated using the Midi Prep Kit (Qiagen, Valencia, 

CA).  Following a restriction digest with EcoRI (Invitrogen) and BamHI (Invitrogen), the 

cut plasmid was subjected to agarose gel electrophoresis (0.8% agarose gel; OmniPure 

Agarose).  The 2.4 kb fragment containing the rat CB1 DNA sequence was cut from the 

agarose gel, isolated and purified using the QIAquick Gel Extraction Kit (Qiagen).  

Purified CB2 DNA from the pUC18 vector containing murine CB2 sequence from 

Dr. T. Bonner (NIMH, Bethesda, MD) was similarly obtained.  Both purified CB1 and 

CB2 DNA products were stored at –20oC in dH20 and the concentration determined using 

a BioPhotometer (Eppendorf, Westbury, NY).  Each product was sequenced at the MCV-

VCU Nucleic Acids Research Facility core lab using an Automated DNA sequencer.  

DNA samples were further analyzed by BLAST (nucleotide-nucleotide BLAST, NCBI, 

Bethesda, MD) to confirm sequence identity.   

   

Multiprobe Ribonuclease Protection Assay 

 Total RNA prepared from peritoneal macrophages using TRIzol reagent 

(Invitrogen, Carlsbad, CA) was redissolved after isopropanol precipitation directly in 1X 

hybridization buffer (BD Biosciences/PharMingen, San Diego, CA).  A Riboquant Multi-

probe Ribonuclease Protection Assay (RPA) was used to assess for levels of murine 

chemokine receptor mRNA (mcr-5 probe template set; BD Biosciences/PharMingen). 

The ribo-probes were labeled with 32P[UTP] (MP Biomedicals, Aurora, OH) to a specific 

activity of greater than 3,000Ci/mmol.  The isolated RNA samples then were hybridized 

with the probe overnight at 56oC and the protected fragments were resolved on a 6% 
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polyacrylamide gel containing 6M urea.  Imaging of the protected fragments was 

performed using a 445 SI Phosphorimager (Molecular Dynamics, Sunnyvale, CA).  The 

pixel intensity of each band was quantified using ImageQuant 4.1 software (Molecular 

Dynamics) and the amount of chemokine receptor mRNA was normalized for loading by 

dividing the pixel value for the chemokine receptor band by the sum of the pixel values 

for the mRNAs of the housekeeping genes, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) and a ribosomal protein, L32. 

 

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

 Real–time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), using 

SYBR Green for detection and primers for CB1 and CB2 and GAPDH, was used to assess 

for the presence of CB1 and CB2 mRNA, and for constitutively expressed GAPDH 

mRNA, respectively.  Total RNA from peritoneal macrophages was prepared using 

TRIzol reagent (Invitrogen) according the manufacturer’s instructions.  The RNA then 

was isolated by chloroform:isopropanol extraction and resuspended in 50 μl PCR grade 

water.  The isolated RNA was treated with RNase-free DNase I Amplification grade 

(Invitrogen) to remove residual genomic DNA.  The reverse transcription (RT) step was 

performed in a Bio-Rad iCycler (BioRad, Richmond, CA) using the SuperScript III First-

Strand Synthesis System (Invitrogen) that included random hexamers as primer to 

generate complementary DNA (cDNA).  SYBR Green real-time PCR was performed 

using the RT2 PCR Primer Set for mouse CB1 (Cnr 1: PPM04603A) or CB2 (Cnr 2: 

PPM04826A) and GAPDH (GAPDH:PPM02946A) as described by the manufacturer 
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(SuperArray Bioscience Corp., Frederick, MD).  Briefly, each 25 μl PCR mix consisted 

of 12.5 μl 2X RT2 Real-Time SYBR Green PCR Master Mix (SuperArray), 1.0 μl first 

strand cDNA template, and 1.0 μl RT2 PCR Primer Set brought to a final volume of 25 μl 

with DEPC-treated water.  Tubes containing the PCR mix were placed in a SmartCycler 

(Cepheid, Sunnyvale, CA) and PCR was performed using the following program: 95oC, 

15 min; 40 cycles of (95oC, 30 sec; 55oC, 30 sec; and 72oC, 30 sec).  The resulting PCR 

products were visualized by electrophoresis (100V) using 4% OmniPur Agarose PCR 

Plus (VWR, West Chester, PA) gel in 1X Tris-Borate-EDTA (TBE) buffer.  A pCD- and 

a pUC18-mCB2 plasmid template served as positive PCR controls for CB1 and CB2, 

respectively.  Using this approach, amplification products of 167 bp and 207 bp were 

generated for CB1 and CB2, respectively. 

 

Scanning Electron Microscopy 

 Transwell inserts containing polycarbonate filters with 8 μm pores were removed 

from the chemotaxis plates.  The top and bottom sides of the filter were washed gently to 

remove non-adherent cells and fixed with 2.5% gluteraldehyde.  Post-fixation with 

2%OsO4 was followed by dehydration in a graded series of alcohol washes (Pettit et al., 

1996).  The filters containing adherent macrophages were subjected to critical point 

drying, coated with gold and viewed with a JEOL scanning electron microscope (20kV).    
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SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Immunoblotting  

 Peritoneal macrophages were washed with room temperature PBS (2x) then 

incubated in NP-40 lysis buffer containing Protease Inhibitor Cocktail (100:1) (Sigma, St. 

Louis, MO; 4-(2-aminoethyl) benzenesulfonyl fluoride, pepstatin A, E-64, bestatin, 

leupeptin, aprotinin) for 30 min on ice.  The cell lysates were centrifuged at 10,000 x g 

for 15 min, at 40C.  The pellets then were discarded, the supernatants containing cellular 

proteins saved, and concentrations were determined by the Bradford assay.  Protein 

samples (40 μg/sample) were separated on a 12% polyacrylamide gel and transferred to a 

Transblot Transfer nitrocellulose membrane (BioRad, Hercules, CA).  The membranes 

were incubated individually with anti-CCR1, anti-CCR5, and anti-CB2 antibody.  The 

antibody to CCR1 (CKR1 H-52 rabbit polyclonal IgG, Santa Cruz Biotechnology) was 

directed against the extracellular amino terminus whereas the antibody to CCR5 (CKR5 

D-19 mouse monoclonal IgG, Santa Cruz Biotechnology) was directed against the 

carboxy terminal domain.  The antibody to CB2 (CB2 M15 goat polyclonal IgG, Santa 

Cruz Biotechnology) was raised against peptide mapping of the C terminus of mouse 

CB2. 

 

Statistical Analysis 

 Analysis of variance (ANOVA) was performed using Dunnett’s test and was 

followed by a Student’s t-test to allow for comparison of each sample to the vehicle.  

Comparisons between treatment groups were performed using Bonferroni’s t test.    
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Results 
Murine Thioglycollate-Elicited Peritoneal Macrophages Express the Chemokine 

Receptors CCR1 and CCR5 and the Cannabinoid Receptor CB2

 RANTES binds to the chemokine receptors CCR1, CCR3, and CCR5 (Murphy, 

2002; Bajetto et al., 2002; Charo et al., 2006).  Thus, in order to determine the CC 

chemokine receptor gene expression profile of (B6C3)F1 and C57BL/6 murine 

thioglycollate-elicited peritoneal macrophages, a multiprobe RNase Protection assay was 

employed.  Using a template set for CC chemokine receptors, it was demonstrated that the 

predominant chemokine receptor mRNAs detected for (B6C3)F1 mice were those for 

CCR1, CCR2 and CCR5 (Fig. 2).  C57BL/6 mice contained approximately equal levels of 

mRNA for CCR1 and CCR5 but, in contrast to (B6C3)F1 mice, contained low levels of 

mRNA for CCR2.  Because RANTES is a major agonist for CCR1 and CCR5, but not 

CCR2, the presence of protein for the former two receptors also was determined (Fig. 3). 

Consistent with the mRNA data, approximately equivalent levels of protein for CCR1 and 

CCR5 were detected in thioglycollate-elicited macrophages of (B6C3)F1 and C57BL/6 

mice.   

 SYBR Green RT-PCR was employed to assess for the presence of CB2 mRNA in 

peritoneal macrophages from (B6C3)F1  and C57BL/6 mice.  Prior to performing PCR, 

CB1 and CB2 cDNA was isolated from plasmid preparations of DH5α E. coli that had 

been transfected with mammalian expression vectors containing CB1 and CB2 DNA 

sequences (pCD-rSKR6 and pUC18-mCB2, respectively) for use as positive controls in 

Real-time RT-PCR.  The isolated plasmids were digested with restriction enzymes EcoRI  

   



www.manaraa.com

    

  

25

 

Figure 2 – CCR1 and CCR5 mRNA Are Expressed by Peritoneal 
Macrophages.  RNase Protection Assay demonstrated that peritoneal 
macrophages express predominantly CCR1 and CCR5, with low levels of 
CCR2 expression. P- Undigested probe, Y- yeast control (-), M- mouse 
control (+), 1-(B6C3)F1 peritoneal macrophages, 2- C57BL/6 peritoneal 
macrophages, 3- CB2 -/- BM cell line (Raborn et al., 2007). 
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B6 C57                B6       C57 B B CCB B CC

Figure 3– Peritoneal Macrophages Express CCR1, CCR5, and CB2 at the 
Protein Level.  Whole cell lysates from (B6C3)F1 and C57BL6 murine 
peritonal macrophages were separated by SDS-PAGE followed by Western 
immunoblot analysis with antibodies to CCR1, CCR5, and Actin. B6- 
(B6C3)F1, C57- C57BL/6    



www.manaraa.com

    27

and BamHI to release cannabinoid receptor DNA sequences.  The digests were subjected 

to agarose gel electrophoresis and CB1 and CB2 DNA was extracted from the gel and 

purified (Fig. 4)(CB1 fragment 2.4kb, CB2 fragment 1.3kb).  A 207 bp amplicon, 

consistent with the fragment size predicted for the CB2, was detected from total RNA of 

peritoneal macrophages (Fig. 5).  Western immunoblot analysis using a murine CB2 

domain-specific antibody confirmed the presence of CB2 in murine peritoneal 

macrophages at the protein level (Fig. 3).  Furthermore, using SYBR Green RT-PCR 

(Fig. 5) and Western immunoblot analysis (Data not shown) the absence of CB1 mRNA 

or protein expression in thioglycollate-elicited peritoneal macrophages from (B6C3)F1  

and C57BL/6 mice was demonstrated.   

 

Treatment with THC in vivo Results in Inhibition of the Chemotactic Response of Murine 

Peritoneal Macrophages to RANTES in vitro. 

 (B6C3)F1 mice were inoculated with thioglycollate and 5 days later were 

administered a single intraperitoneal injection of vehicle (ethanol:emulphor:saline, 

1:1:18) or THC (25 mg/kg or 50 mg/kg).  Peritoneal macrophages were harvested 24h 

later and were subjected to migration assay.  In vivo administration of 25 mg/kg or 50 

mg/kg THC resulted in a significant and greater than 50% inhibition of cell migration in 

response to RANTES as compared to that observed for cells of mice receiving vehicle 

(Fig. 6).  No significant differences in migration were obtained between vehicle and drug 

treated cells when RANTES was placed in both the top and bottom compartments to  
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Figure 4- Generation of Real-time RT-PCR CB1 and CB2 positive control 
DNA.  pUC18-mCB2 was digested with EcoR1 and BamH1 to release 
mCB2 DNA (1.3 kb).  B. pCD-sKR6 (rCB1)was digested with EcoR1 and 
BamHI to release 2.4 kb fragment of rCB1 DNA.   
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Figure 5- Cannabinoid Receptor mRNA Expression by Peritoneal 
Macrophages.  Real-time RT-PCR demonstrated that peritoneal macrophages 
express primarily CB2 mRNA.  CB1 and CB2 DNA as well as GAPDH were 
used as positive controls.   
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Figure 6- Treatment in vivo with THC Results in Inhibition of the Chemotactic 
Response to RANTES.  (B6C3)F1 mice were injected intraperitoneally with 10% 
thioglycollate to elicit macrophages. Five days later, the mice were injected 
intraperitoneally with vehicle (VEH) (1:1:18, ethanol:emulphor:saline) or THC (25 
mg/kg or 50 mg/kg). Migration of macrophages to 1ng/ml RANTES was assessed in 
vitro using transwell tissue culture inserts. Results are presented as the mean ± SD. 
For RANTES placed only in the bottom chamber, SD was compared with that of 
vehicle-treated macrophages exposed to RANTES in the bottom chamber. For 
RANTES placed in both chambers (shaded bars), SD was compared with that of 
vehicle-treated macrophages exposed to RANTES in both chambers. When RANTES 
was added only to the bottom compartment, THC as compared to the vehicle control 
exerted a major inhibitory effect on cell migration to the bottom compartment. When 
RANTES was added to both the upper and lower compartments to eliminate the 
chemoattractant concentration gradient, THC as compared to the vehicle control did 
not result in significant inhibition of cell migration to the bottom well. These results 
indicate that THC inhibits directed migration (i.e., chemotaxis) to a RANTES 
concentration gradient rather enhancement of random movement (i.e., chemokinesis) 
to RANTES. **p<0.01. 
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eliminate the RANTES concentration gradient.  These results are consistent with THC as 

exerting an inhibitory effect on the macrophage chemotactic response to RANTES. 

 

Treatment with THC and CP55940 in vitro Results in Inhibition of the Chemotactic 

Response of Murine Peritoneal Macrophages to RANTES 

 In order to determine whether THC exerted a direct effect on macrophages, in 

vitro exposure experiments were performed. THC treatment of (B6C3)F1 murine 

peritoneal macrophages in vitro resulted in a significant inhibition of the chemotactic 

response to RANTES (Fig. 7).  Cells treated with vehicle exhibited a minimal level of 

migration (i.e., approximately 1,600 cells/mm2/well) to the bottom compartment in the 

absence of RANTES.  In contrast, when RANTES was added to the bottom compartment 

to establish a chemokine concentration gradient, a nearly five-fold increase (i.e., in excess 

of 5,000 cells/mm2/well) was obtained for macrophages treated with vehicle.  Treatment 

of macrophages with THC (10-6M – 10-12M) resulted in a significant inhibition of 

migration in response to RANTES.  THC, at a concentration as low as 10-12M, exerted a 

major inhibitory effect on cell migration, with numbers of cells in the bottom 

compartment approximating those for cells treated with vehicle and not exposed to 

RANTES.  Again, the inhibitory effect of THC on macrophage migration was at the level 

of chemotaxis rather than chemokinesis.  When RANTES was added to both the upper 

and lower compartments to eliminate the chemoattractant concentration gradient to allow 

for assessment of random migration to chemokine, approximately 1,000 cells/mm2/well 

were obtained for peritoneal macrophages treated with vehicle.  Treatment of these cells  
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Figure 7 - Treatment in vitro with THC Results in Inhibition of the Chemotactic 
Response to RANTES. A.  Migration of peritoneal macrophages to 1ng/ml 
RANTES was assessed following in vitro treatment (3h) with THC (10-6  to 10-12  
M) or vehicle (VEH) (0.01% ethanol).  Treatment with the partial agonist THC 
resulted in inhibition of chemotaxis. Results are presented as the mean  ± SD. For 
RANTES placed only in the bottom chamber, SD was compared with that of 
vehicle-treated macrophages exposed to RANTES in the bottom chamber. For 
RANTES placed in both chambers (shaded bars), SD was compared with that of 
vehicle-treated macrophages exposed to RANTES in both chambers. *p<0.05, 
**p<0.01, ***p<0.001.  B. Results presented as Percent Inhibition of migration.   
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with 10-8M or 10-11M THC did not result in significant inhibition of this random 

movement. Rather, a slight augmentation in random migration to the bottom compartment 

was recorded.  

 Experiments performed with THC were replicated using CP55940, a high efficacy 

agonist at CB1 and CB2 (Fig. 8).  Again, a minimal level in cell migration was observed 

for control wells.  Approximately 1,500 cells/mm2/well were recorded when vehicle-

treated cells were placed in the top compartment in the absence of RANTES in the 

bottom compartment.  An approximate four-fold increase in the number of peritoneal 

macrophages treated with vehicle was obtained when RANTES was placed in the bottom 

compartment to establish a chemoattractant gradient.  Treatment of cells with CP55940 

(10-6M – 10-12M) resulted in a significant concentration-related decrease in migration in 

response to RANTES.  A greater than 50% inhibition in migration was obtained for cells 

treated with CP55940 at 10-6M – 10-9M as compared to vehicle control.  CP55940 as 

compared to vehicle did not affect macrophage migration when RANTES was placed 

both in the top and bottom compartments to eliminate the chemoattractant gradient, 

indicating that the effect of CP55940 on migration was at the level of chemotaxis rather 

than chemokinesis.  
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Figure 8- Treatment in vitro with CP55940 Results in Inhibition of the Chemotactic 
Response to RANTES. A.  Migration of peritoneal macrophages to 1ng/ml RANTES was 
assessed following in vitro treatment (3h) with CP55940 (CP) (10-6 to 10-12  M) or vehicle 
(VEH) (0.01% ethanol). Treatment with the full agonist CP55940 resulted in a robust 
dose-related inhibition of chemotaxis to RANTES. Results are presented as the mean  ± 
SD. For RANTES placed only in the bottom chamber, SD was compared with that of 
vehicle-treated macrophages exposed to RANTES in the bottom chamber. For RANTES 
placed in both chambers (shaded bars), SD was compared with that of vehicle-treated 
macrophages exposed to RANTES in both chambers. *p<0.05, **p<0.01. B. Results 
presented as Percent Inhibition of Migration.   
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The CB2-selective Ligand O-2137 Exerts a Robust Inhibitory Effect on the Murine 

Peritoneal Macrophage Chemotactic Response to RANTES 

 The concentration-related inhibitory effect most evident using CP55940 on the 

chemotactic response of murine peritoneal macrophages to RANTES implicated a role 

for a cannabinoid receptor in this process.  In order to obtain insight as to the cannabinoid 

receptor linked to the inhibitory effect, macrophages from (B6C3)F1 mice were treated 

with compounds exhibiting selective high affinity binding to the CB1 or the CB2 prior to 

assessment of the chemotactic response to RANTES.  Treatment of macrophages with the 

highly selective CB2 ligand O-2137 resulted in a profound and significant concentration-

related inhibition in the chemotactic response to RANTES (Fig. 9).  For drug 

concentrations of 10-6M – 10-8M, a greater than 50% inhibition, as compared to vehicle 

control, was observed.  In contrast, the CB1 specific ligand ACEA (10-6M – 10-12M) 

exerted a minimal inhibitory effect on the peritoneal macrophage chemotactic response to 

RANTES (Fig. 10).  

The CB2-specific Antagonist SR144528 Reverses the Inhibitory Effect of CP55940 on the 

Murine Peritoneal Macrophage Chemotactic Response to RANTES 

In order to confirm the data indicating that activation of the CB B2 with a 

cannabinoid receptor selective ligand exerted a major inhibitory effect on the chemotactic 

response to RANTES, cannabinoid receptor agonist-antagonist experiments were 

performed.  For these experiments, the CB1 or CB2 antagonist was used at a concentration 

of 10 M.  Treatment of (B-6
6C3)F1 murine peritoneal macrophages with the CB2-specific  
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B.

Figure 9- Effect of the CB2-selective Ligand on the Chemotactic Response to 
RANTES. A.  Treatment (3h) with the CB2-selective ligand O-2137 resulted in a 
robust and significant inhibition of chemotaxis. Results are presented as the mean  ± 
SD. For RANTES placed only in the bottom chamber, SD was compared with that 
of vehicle-treated macrophages exposed to RANTES in the bottom chamber. For 
RANTES placed in both chambers (shaded bars), SD was compared with that of 
vehicle (VEH)-treated macrophages exposed to RANTES in both chambers. 
*p<0.05, **p<0.01. B. Results presented as Percent Inhibition of migration.   



www.manaraa.com

    

  

37

 

*

1 ng/ml RANTES

1

2

3

4

C
el

ls
 x

 1
03 /m

m
2 /W

el
l

ACEA  (log10 M)VEH ACEA (log10 M) VEH
-6     -7      -8     -9    -10    -11   -12 -8     -11

*

1 ng/ml RANTES

1

2

3

4

C
el

ls
 x

 1
03 /m

m
2 /W

el
l

ACEA  (log10 M)VEH ACEA (log10 M) VEH
-6     -7      -8     -9    -10    -11   -12 -8     -11

B.

A.

0.00

25.00

50.00

75.00

100.00

0.001 0.01 0.1 1 10 100 1000
 ACEA (nM)

%
 in

hi
bi

tio
n 

of
 m

ig
ra

tio
n

 

Figure 10- Effect of the CB1-selective Ligand on the Chemotactic Response to RANTES. 
A.  Treatment with the CB1-selective ligand ACEA had a minimal effect on RANTES-
induced migration of peritoneal macrophages. Results are presented as the mean  ± SD. 
For RANTES placed only in the bottom chamber, SD was compared with that of vehicle 
(VEH)-treated macrophages exposed to RANTES in the bottom chamber. For RANTES 
placed in both chambers (shaded bars), SD was compared with that of vehicle-treated 
macrophages exposed to RANTES in both chambers. *p<0.05. B.  Results presented as 
Percent Inhibition of migration. 
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antagonist SR144528 (SR2) alone had no major effect on the chemotactic response to 

RANTES.  At equimolar concentrations (i.e., 10-6M) of antagonist and agonist, CP55940 

inhibited macrophage chemotaxis to RANTES.  However, at lower concentrations of 

CP55940 (10-7M – 10-11M), the inhibitory effect of the agonist was reversed by the CBB2 

antagonist SR144528 (Fig. 12).  These results were in direct contrast to those obtained 

when the CB1 antagonist SR141716A (SR1) was used (Fig. 11).  Treatment with SR1 

(10 M – 10 M) did not block the inhibitory effect of CP55940.  -6 -12

 

THC Does Not Inhibit the Chemotactic Response to RANTES of Peritoneal Macrophages 

from CB2 Knockout Mice  

 To confirm the pharmacological data implicative of a functional linkage of the 

CB2 to cannabinoid-mediated inhibition of macrophage chemotaxis to RANTES, 

experiments were performed using thioglycollate-elicited peritoneal macrophages from 

C57BL/6 CB2 knockout mice.  THC (10-5M – 10-9M) had no significant effect on either 

the chemotactic or chemokinetic response of macrophages from the knockout mice (Fig. 

13).  Since these CB2 null animals were generated on a C57BL/6 genetic background, 

replicate migration experiments were performed using thioglycollate-elicited peritoneal 

macrophages from their C57BL/6 CB2 (+/+) wild-type counterparts.  Consistent with the 

data obtained using (B6C3)F1 mice, THC exerted a concentration-related inhibition of the 

chemotactic response of peritoneal macrophages to RANTES (Fig. 14).   
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Figure 11- Effect of CB1 Cannabinoid Receptor Antagonist on Chemotaxis to 
RANTES. Treatment with the CB1 antagonist SR141716A (SR1)(10-6 M) did not 
block CP55940 (CP)-mediated inhibition of chemotaxis. Macrophages were 
treated (30 min) with antagonist prior to treatment (3h) with cannabinoid. Results 
are presented as the mean ± SD. For RANTES placed only in the bottom chamber, 
SD was compared with that of vehicle (VEH)-treated macrophages exposed to 
RANTES in the bottom chamber. For RANTES placed in both chambers (shaded 
bars), SD was compared with that of vehicle-treated macrophages exposed to 
RANTES in both chambers. *p<0.05, **p<0.01.  
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Figure 12- Effect of CB2 Cannabinoid Receptor Antagonist on Chemotaxis to 
RANTES.  The CP55940 (CP)-mediated inhibition of chemotaxis was reversed by  
SR144528 (SR2)(10-6  M). Macrophages were treated (30 min) with antagonist prior 
to treatment (3h) with cannabinoid. Results are presented as the mean ± SD. For 
RANTES placed only in the bottom chamber, SD was compared with that of vehicle 
(VEH)-treated macrophages exposed to RANTES in the bottom chamber. For 
RANTES placed in both chambers (shaded bars), SD was compared with that of 
vehicle-treated macrophages exposed to RANTES in both chambers. *p<0.05, 
**p<0.01, ***p<0.001.  
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Figure 13- Effect of THC on the Chemotactic Response of Peritoneal 
Macrophages from CB2 Knockout Mice to RANTES. In vitro THC treatment (3h) 
did not have a significant effect on RANTES-induced migration by peritoneal 
macrophages from CB2 receptor knockout mice. Results are presented as the mean 
± SD. For RANTES placed only in the bottom chamber, SD was compared with 
that of vehicle (VEH)-treated macrophages exposed to RANTES in the bottom  
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Figure 14- Effect of THC on the Chemotactic Response of Peritoneal Macrophages from 
the Wild-type Counterpart. THC treatment (3h) resulted in a concentration-related 
inhibition of the chemotactic response of peritoneal macrophages to RANTES from the 
C57BL/6 CB2 (+/+) wild-type counterpart. Results are presented as the mean ± SD. For 
RANTES placed only in the bottom chamber, SD was compared with that of vehicle 
(VEH)-treated macrophages exposed to RANTES in the bottom. *p<0.05, **p< 0.01, 
***p<0.001 
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THC Alters Functional Morphology of Murine Peritoneal Macrophages Undergoing 

Chemotaxis to RANTES 

 Transwell chemotaxis assays revealed that THC inhibits peritoneal macrophage 

migration to RANTES.  Scanning electron microscopy analysis of the transwell 

membranes demonstrated that cells treated with THC exhibited altered morphology and 

were apparently impaired in their ability to migrate through the pores into the bottom 

chamber containing the chemoattractant.  Vehicle-treated (0.01% Ethanol) peritoneal 

macrophages exposed to RANTES exhibited characteristics indicative of cell migration 

including cell membrane ruffling and lobose cellular extensions (pseudopodia formation) 

(Fig. 15).  Additionally, numerous vehicle-treated macrophages were found in or in close 

proximity to the membrane pores with pseudopodia extending toward the pore (Fig. 15).  

In contrast, peritoneal macrophages treated with THC were rounded in appearance, with 

the absence of cellular extensions.  Few THC-treated macrophages were observed close 

to or in filter pores.  

 

THC Does Not Alter mRNA Levels of CC Chemokine Receptors in Thioglycollate-Elicited 

Murine Peritoneal Macrophages 

 Chemotaxis to RANTES results from a complex series of signal transductional 

activities following ligation of the chemokine to its cognate G protein-coupled receptor. 

THC treatment of macrophages could affect activation of chemokine receptors and alter 

their expression and/or compartmentalization.  Thus, in order to obtain initial insight as to  
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Vehicle             Vehicle             THC (10-6M) 

Figure 15– THC Alters the Morphology of Peritoneal Macrophages 
Migrating to RANTES.  Scanning electron microscopy of transwell inserts 
of peritoneal macrophages treated with Vehicle (0.01% Ethanol) migrating 
towards 1ng/ml RANTES (note multiple cellular projections).  Cells 
treated with THC are rounded in appearance and do not seem to be 
migrating toward RANTES.  Scale bars 1, 10, and 10 mm left to right.   
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the mode of action through which THC treatment results in inhibition of chemotaxis, 

experiments were performed to assess for levels CC chemokine mRNA in peritoneal 

macrophages.  THC (10-6M -10-12M) treatment of (B6C3)F1 peritoneal macrophages (3h) 

had no major effect on total mRNA levels of CCR1, CCR2 or CCR5 (Fig. 16). 

Additionally, treatment with a battery of cannabinoid receptor agonists and antagonists 

(THC, CP55940, SR1, and SR2 at 10-6M) also had no major effect on chemokine 

receptor mRNA levels (Fig. 17).  Chemokine receptor mRNA levels also were assessed 

for peritoneal macrophages exposed to THC in vivo (50mg/kg THC for 24h prior to 

harvest of peritoneal macrophages).  Consistent with results obtained in vitro, THC 

treatment had no major effect on the expression of CCR1, CCR2, or CCR5 at the level of 

total mRNA (Data not shown).  Similarly, at this concentration range THC had no major 

effect on total mRNA levels of CB2 (Data not shown).   

Heterologous Desensitization of Chemokine Receptors by Cannabinoids 

 G-protein coupled receptors display reduced responsiveness with prolonged or 

repeated agonist stimulation, a process known as receptor desensitization.  Upon 

phosphorylation by G-protein receptor kinases (GRKs) receptor internalization and 

recycling is initiated.  In cell types expressing numerous classes of G-protein coupled 

receptors, signaling through one class of GPCR has been shown to trans-deactivate other 

receptor types through heterologous desensitization.  It is therefore possible that 

cannabinoid treatment could affect chemokine receptor function, resulting in reduced 

responsiveness to chemokines. In order to obtain insight regarding whether cannabinoid  
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Figure 16- Effect of THC on Levels of CC Chemokine Receptor mRNA.  
Multiprobe ribonuclease protection assay demonstrated that THC (10-6 M – 
10-12 M) treatment (3h) had no major effect on levels of CCR1, CCR2, and 
CCR5 mRNA in thioglycollate-elicited (B6C3)F1 murine peritoneal 
macrophages.  
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Figure 17- Effect of Select Cannabinoids on Levels f CC Chemokine 
Receptor mRNA.  Multiprobe ribonuclease protection assay demonstrated 
that THC, CP55940, SR1, or SR2  (10-6 M) treatment (3h) had no major 
effect on levels of CCR1, CCR2, and CCR5 mRNA in thioglycollate-
elicited (B6C3)F1 murine peritoneal macrophages. 
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 treatment caused heterologous desensitization of chemokine receptors, experiments were 

performed to assess levels of CCR5 phosphorylation following stimulation with 

RANTES or CP55940.  Treatment of peritoneal macrophages with cognate ligand 

RANTES (1ng/ml) (1h) resulted in increased CCR5 phosphorylation compared to vehicle 

(Fig. 18).  CP55940 treatment also enhanced CCR5 phosphorylation, though not to the 

same extent as the cognate agonist, indicating that heterologous desensitization of 

chemokine receptors by cannabinoids may be occurring.   

 

Endogenous Cannabinoid 2-Arachidonylglycerol (2-AG) Induces Murine Peritoneal 

Macrophage Migration      

 Numerous groups have reported that select cannabinoids are capable of inducing 

migration in a variety of immune cell types including microglia and cell lines of myeloid 

origin (Walter et al., 2003; Jordá et al., 2002; Kishimoto et al., 2005); however, to date 

there have been no published reports specifically utilizing primary macrophages from the 

periphery.  To address this, experiments were performed to assess the ability of the 

endogenous cannabinoid, 2-AG (1 nM to 5 μM) to induce peritoneal macrophage 

migration.  Maximal macrophage migration was observed using 1μM 2-AG (Fig. 19), 

consistent with data obtained using other cell types. 
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Figure 18– Stimulation with RANTES and Cannabinoid Receptor 
Agonist CP55940 Induces CCR5 Phosphorylation.  Peritoneal 
macrophages were treated for 1h with vehicle, RANTES (1ng/ml), or 
CP55940 (10-6 M) and harvested for protein.  Whole cell protein lysates 
of peritoneal macrophages were precleared with normal mouse IgG.  A 
CCR5 antibody was used to immunoprecipitate CCR5 from the 
precleared protein lysate. Following SDS-PAGE, the immunoblot (A.) 
was probed with an antiphosphoserine antibody to detect CCR5 
phosphorylation.  B. Densitometric analysis of CCR5 phosphorylation.  
V-vehicle, R- RANTES, CP-CP55940.    
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Figure 19 – The Endogenous Cannabinoid 2-AG Induces Peritoneal Macrophage 
Chemotaxis.  Transwell chemotaxis assay was utilized to assess chemoattractant 
properties of 2-AG (4h) (0.01-5 μΜ).  Results are presented as mean ± SD.   
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Treatment with THC Inhibits Murine Peritoneal Macrophage Migration to 2-AG 

 Further experiments were performed to address whether treatment with THC 

could inhibit peritoneal macrophage chemotaxis to 2-AG.  Treatment of macrophages 

with THC (10-6M – 10-8M) resulted in a significant inhibition of migration in response to 

2-AG (Fig 20). 

 

Migration of Murine Peritoneal Macrophages to Amoebic Conditioned Medium 

 In studies using an in vivo murine model of Acanthamoeba infection, Marciano-

Cabral and Cabral (2003) demonstrated that macrophage-like cells are the primary 

immune cell component in granulomas, which are formed in response to amoebic 

infection.  It has been proposed that these granulomas may serve to sequester the ameba, 

thereby preventing further dissemination (Fig. 21).  Additionally, exposure to THC 

exacerbated Acanthamoeba infection, characterized by increased mortality and numbers 

of amoeba present in brain sections, as well as the absence of granuloma formation (Fig. 

21).  Acathamoeba infection notably results in dramatic and extensive tissue damage, 

which occurs through a combination of direct contact and the secretion of numerous lytic 

enzymes (Table 4).  Experiments, therefore, were performed to assess peritoneal 

macrophage migration to amebic conditioned medium (0-72 μg) obtained from cultures 

incubated with Acanthamoeba culbertsoni (AcCM) and Acanthamoeba (JH1) (JH1CM), 

a clinical isolate containing intracellular bacteria.  Amebic conditioned medium from A. 

culbertsoni (Fig. 22) and JH1 isolate (similar results, data not shown) induced  
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Figure 20– THC Inhibits Peritoneal Macrophage Chemotaxis to 2-AG.  
Peritoneal macrophages were treated with THC (10-6 -10-12 M) for 3 h and then 
assessed for chemotaxis to 1 μM 2-AG (2h). VEH- vehicle (0.01% ethanol).  
*p<0.05, **p<0.01.  
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A.  B. 

Figure 21– A. Hematoxylin and Eosin (H&E) Stained Section of Paraffin-
embedded Brain Tissue Demonstrating Granuloma Formation in Acanthamoeba 
infection. B.  Sections of paraffin-embedded brain tissue demonstrating granuloma 
formation in Acanthamoeba infection. Top panel- Vehicle treated mouse.  Bottom 
panel- THC-treated mouse. Images courtesy of Marciano-Cabral and Cabral 2003 
and Cabral et al., 2007.   
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Table 4- Acanthamoeba Secreted Factors 
 

Product        Action     Reference 
 
Serine Protease (33 kD)      degrades IgG and IgA  Kong et al., 2000 
 
Lytic enzymes        involved in invasion  Moore et al., 1991 
         Alfieri et al., 2000 
 
Serine and cysteine       markers for pathogenicity             Hadas and Mazur 
proteinases        1993 
 
Serine, cysteine and        degrade type I collagen  Mitro et al., 1994 
metalloproteinases        
 
Serine protease (42kD)      degrades collagen   Cho et al., 2000 
 
Serine protease (33kD)      implicated in virulence  Kim et al., 2006 
 
Serine protease (85,130kD)      degrades types I and III collagen Sissons et al., 2006 
         elastin, plasminogen, casein, 
         and hemoglobin 
 
Metalloprotease (150kD)      degrades types I and III collagen   
         elastin, plasminogen, casein, 
         and hemoglobin   
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Figure 22 – Peritoneal Macrophages Migrate in Response to Amoebic 
Conditioned Medium.  Transwell migration assays (2h) were performed 
to assess peritoneal macrophage migration to Acanthamoeba conditioned 
medium (Acanthamoeba culbertsoni- 0-72 μg).      
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macrophage migration with a greater than 2-fold increase observed at concentrations of 

conditioned medium as low as 36μg.     

 

Treatment with THC Inhibits the Chemotactic Response of Murine Peritoneal 

Macrophages to Amoebic Conditioned Medium 

 In order to determine whether THC exerted a direct effect on macrophage 

migration to amebic conditioned medium, in vitro exposure experiments were performed. 

A minimal level of cell migration was observed for control wells.  An approximate three-

fold increase in the number of peritoneal macrophages treated with vehicle was obtained 

when amoebic conditioned medium was placed in the bottom compartment to establish a 

chemoattractant gradient.  Treatment of cells with THC (10-6-10-10M) resulted in a 

significant concentration-related decrease in migration in response to Acanthamoeba 

(JH1) conditioned medium (JH1CM; 36μg) (Fig. 23).  Similarly, treatment of cells with 

THC (10-6-10-11M) resulted in a significant concentration-related decrease in migration in 

response to Acanthamoeba culbertsoni conditioned medium (AcCM; 36μg) (Fig. 24).   

 

Treatment with THC in vivo Results in Inhibition of Murine Peritoneal Macrophage 

Migration to Amoebic Conditioned Medium in vitro 

 (B6C3)F1 mice were inoculated with vehicle (ethanol:emulphor:saline, 1:1:18) or 

THC (5, 10, 25 or 50 mg/kg) (one injection per day for 4 days).  On the last day of 

injections, thioglycollate was administered and 5 days later peritoneal macrophages were 

harvested.  Migration assays were performed to assess the effect of in vivo THC exposure  
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Figure 23– THC Inhibits Peritoneal Macrophage Chemotaxis to Acanthamoeba
Condtioned Medium.   Peritoneal macrophages were treated with THC (10-6- 
10-12 M) for 3h and then assessed for migration to 36 μg Acanthamoeba (JH1) 
conditioned medium (1h).  *p<0.05, ***p<0.001. VEH- vehicle (0.01% 
ethanol). 
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Figure 24– THC Inhibits Peritoneal Macrophage Chemotaxis to 
Acanthamoeba Conditioned Medium. Peritoneal macrophages were 
treated with THC (10-6- 10-12 M) for 3h then assessed for migration to 36 
μg Acanthamoeba culbertsoni conditioned medium (AcCM) for 1h. 
Results are presented as mean ± SD. **p<0.01, ***p<0.001. VEH- 
vehicle (0.01% ethanol).  
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on in vitro migration to amoebic conditioned medium.  In vivo administration of 10 

mg/kg or 25 mg/kg THC resulted in a significant and greater than 50% inhibition of cell 

migration to Acanthamoeba culbertsoni conditioned medium (AcCM; 36μg) (Fig. 25).   

 

Treatment with CP55940 Inhibits the Chemotactic Response of Murine Peritoneal 

Macrophages to Amoebic Conditioned Medium 

 Experiments performed with THC were replicated using CP55940, a high efficacy 

agonist at CB1 and CB2.  Treatment of cells with CP55940 (10-6-10-10 and 10-12 M) 

resulted in a significant concentration-related decrease in chemotaxis in response to 

Acanthamoeba (JH1) conditioned medium (JH1CM; 36μg) (Fig. 26).  Greater than 50% 

inhibition of cell migration to amebic conditioned medium was observed with CP55940 

treatment at concentrations of 10-6-10-10M compared to vehicle-treated macrophages.     

 

The CB2-selective Ligand O-2137 Exerts a Robust Inhibitory Effect on the Murine 

Peritoneal Macrophage Chemotactic Response to Amoebic Conditioned Medium 

 In order to determine whether a cannabinoid receptor was linked to the observed 

inhibitory effect, macrophages from (BB6C3)F1 mice were treated with compounds 

exhibiting selective high affinity binding to the CB1 or the CB2 prior to assessment of the 

chemotactic response to amoebic conditioned medium.  Treatment of macrophages with  
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Figure 25- In vivo Exposure to THC Inhibits Peritoneal Macrophage 
Chemotaxis to Acanthamoeba Conditioned Medium. (B6C3)F1 mice were 
inoculated with vehicle (VEH) (ethanol:emulphor:saline, 1:1:18) or THC (5, 
10, 25 or 50 mg/kg) (one injection per day for 4 days) and peritoneal 
macrophages harvested 5 days later.  Migration to Acanthamoeba culbertsoni 
conditioned medium (AcCM; 36μg) was assessed.  Results are presented as 
mean ± SD. *p<0.05. 
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Figure 26– CP55940 Inhibits Peritoneal Macrophage Chemotaxis to 
Acanthamoeba Conditioned Medium. Peritoneal macrophages were treated 
with CP55940 (CP) (10-6- 10-12 M) for 3h then assessed for migration to 36 
μg Acanthamoeba (JH1) conditioned medium (JH1CM) for 1h. Results are 
presented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.  VEH- vehicle 
(0.01% ethanol). 
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the highly selective CB2 ligand O-2137 resulted in a profound and significant 

concentration-related inhibition in the chemotactic response to Acanthamoeba (JH1) 

conditioned medium (JH1CM; 36 μg) (Fig. 27).  For drug concentrations of 10-6M – 10-

8M, a greater than 50% inhibition, as compared to vehicle control, was observed.  In 

contrast, the CB1 specific ligand ACEA (10-6M – 10-12M) had no inhibitory effect on the 

peritoneal macrophage chemotactic response to Acanthamoeba (JH1) conditioned 

medium (JH1CM; 36 μg) (Fig. 28).  

 

CB2-specific Antagonist SR144528 (SR2) Reverses the Inhibitory Effect of CP55940 on 

the Murine Peritoneal Macrophage Chemotactic Response to Amoebic Conditioned 

Medium 

 Cannabinoid receptor agonist-antagonist experiments were performed to further 

confirm the previous data indicating that activation of the CB2 with a cannabinoid 

receptor selective ligand exerted a major inhibitory effect on the chemotactic response to 

amoebic conditioned medium.  For these experiments, the CB2 antagonist SR144528 

(SR2) was used at a concentration of 10-6M.  Treatment of (B6C3)F1 murine peritoneal 

macrophages with the CBB2-specific antagonist SR2 alone had no significant effect on the 

chemotactic response to Acanthamoeba (JH1) conditioned medium (JH1CM; 54 μg), as 

there was no significant difference in migration to JH1CM by SR2- or vehicle-treated 

cells (Fig. 29).  At equimolar concentrations (i.e., 10 M) of antagonist and agonist, -6
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Figure 27 – The CB2 Selective Agonist O-2137 Inhibits Peritoneal Macrophage 
Chemotaxis to Acanthamoeba Conditioned Medium. Peritoneal macrophages 
were treated with O-2137 (10-6- 10-12 M) for 3h then assessed for migration to 36 
μg Acanthamoeba (JH1) conditioned medium (JH1CM) for 1h. Results are 
presented as mean ± SD. *p<0.05, **p<0.01.  VEH- vehicle (0.01% ethanol). 
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Figure 28 – The CB1 Selective Agonist ACEA Has No Effect on Peritoneal 
Macrophage Migration to Acanthamoeba Conditioned Medium.  Peritoneal 
macrophages were treated with ACEA (10-6- 10-12 M) for 3h then assessed 
for migration to 36 μg Acanthamoeba (JH1) conditioned medium (JH1CM) 
for 1h. Results are presented as mean ± SD. VEH- vehicle (0.01% ethanol). 
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Figure 29- Effect of Cannabinoid Receptor Antagonist on Chemotaxis to 
Acanthamoeba Conditioned Medium.  The CP55940 (CP)-mediated inhibition of 
chemotaxis was reversed by the CB2 antagonist (SR2) SR144528 (10-6 M). 
Macrophages were treated (30 min) with antagonist prior to treatment (3h) with 
cannabinoid and assessed for migration to 54 μg Acanthamoeba (JH1) conditioned 
medium (JH1CM)(1h).  Results are presented as the mean ± SD. For cannabinoid-
treated cells exposed to amoeba conditioned medium placed only in the bottom 
chamber, SD was compared with that of vehicle-treated macrophages exposed to 
conditioned medium in the bottom chamber. For cannabinoid-treated cells exposed 
to conditioned medium placed in both chambers (shaded bars), SD was compared 
with that of vehicle (VEH)-treated macrophages exposed to conditioned medium in 
both chambers.  ***p<0.001.  
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CP55940 inhibited macrophage migration to JH1CM.  Additionally, referencing Fig. 26, 

CP55940-mediated inhibition of migration extended through concentrations as low as 10-

12M, with greater than 50% inhibition observed through 10-10M.  However, the inhibitory 

effect of the agonist began to be reversed by SR2 in cells treated with 10-10M CP55940 

(approximately 25% inhibition compared to 50%) and was totally reversed in cells treated 

with 10-11 and 10-12 M CP55940.   

 

THC Alters Functional Morphology of Murine Peritoneal Macrophages Undergoing 

Chemotaxis to Amoebic Conditioned Medium 

Transwell chemotaxis assays revealed that THC inhibits peritoneal macrophage 

migration to Acanthamoeba conditioned medium.  Similar to results seen of macrophages 

migrating to RANTES, scanning electron microscopy analysis of the transwell 

membranes demonstrated that cells treated with THC were impaired in their ability to 

migrate through the pores into the bottom chamber containing the chemoattractant.  

Vehicle-treated (0.01% Ethanol) peritoneal macrophages exposed to amoeba conditioned 

medium exhibited characteristics indicative of cell migration including lobose cellular 

extensions (Fig. 30).  Additionally, numerous vehicle-treated macrophages were found in 

or near the membrane pores with pseudopodia extending toward the pore (Fig. 30).  In 

contrast, peritoneal macrophages treated with THC were rounded in appearance, with the 

absence of cellular extensions. Few THC-treated macrophages were observed in filter 

pores and those cells that were proximal did not appear to be moving toward the pore. 
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Figure 30– THC Alters the Morphology of Peritoneal Macrophages Migrating to 
Acanthamoeba Conditioned Medium.  Scanning electron microscopy of 
transwell inserts of peritoneal macrophages treated with Vehicle (0.01% 
Ethanol) or THC (10-6 M) (3h) migrating towards Acanthamoeba conditioned 
medium (top row- Acanthamoeba JH1 conditioned medium (JH1CM), bottom 
row- Acanthamoeba culbertsoni conditioned medium).  Note the cellular 
projections of the vehicle-treated macrophages migrating to amoebic conditioned 
medium, whereas the cells treated with THC are rounded in appearance and do 
not appear to be migrating toward the pores.  Scale bars top row left to right 1, 1, 
and 10 μm; bottom row both 10 μm.  
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Treatment with THC and CP55940 Inhibits Rat Primary Microglial Migration to Amoeba 

Conditioned Medium 

 As one of the primary sites of Acanthamoeba infection occurs in the CNS, it was 

important to assess the effect of cannabinoids on migration of primary microglial cells to 

amoebic conditioned medium.  Treatment of primary neonatal rat microglia with THC 

(10-6 -10-8 M) resulted in significant inhibition of migration to Acanthamoeba culbertsoni 

conditioned medium (AcCM; 54μg) (Fig. 31).  Replicate experiments using CP55940 

also resulted in significant concentration-related inhibition of microglial migration to 

Acanthamoeba culbertsoni conditioned medium  (AcCM; 54μg) (Fig. 31).  Similar 

experiments assessing the effect of THC or CP55940 (10-6 M) on microglial migration to 

Acanthamoeba (JH1) conditioned medium also revealed cannabinoid-mediated inhibition 

(data not shown). 

 

The CB2-selective Ligand O-2137 Inhibits Rat Primary Microglial Migration to Amoebic 

Conditioned Medium   

 The inhibitory effect of THC and CP55940 on the migratory response of primary 

microglia to amoebic conditioned medium implicated a role for a cannabinoid receptor.  

Cannabinoid receptor selective agonists therefore were employed to determine the 

cannabinoid receptor associated with this inhibitory effect.  Treatment with O-2137, a 

highly selective CB2 ligand resulted in significant inhibition of microglial migration to 

Acanthamoeba (JH1) conditioned medium (JH1CM; 72 μg) conditioned medium 
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Figure 31- THC and CP55940 Inhibit Chemotaxis of Microglia to 
Acanthamoeba Conditioned Medium. Purified rat microglia were treated for 3 h 
with cannabinoid or vehicle (VEH) (0.01% ethanol) and assessed (2h) for 
migration to Acanthamoeba culbertsoni conditioned medium (AcCM; 54 μg). 
Results are presented as the mean ± SD.  *p<0.05, **p<0.01, ***p<0.001.  
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and Acanthamoeba culbertsoni conditioned medium (AcCM; 54 μg) (Figures 32 and 33, 

respectively).  In contrast, treatment with the CB1 selective ligand had no effect on 

microglial migration to Acanthamoeba (JH1) conditioned medium (JH1CM; 54 μg) 

conditioned medium and Acanthamoeba culbertsoni conditioned medium (AcCM; 54 μg) 

(Figures 32 and 33, respectively).   

  

The CB2-specific Antagonist SR144528 Reverses the Inhibitory Effect of CP55940 on Rat 

Primary Microglial Migration to Amoebic Conditioned Medium 

 To confirm the cannabinoid receptor associated with the inhibitory effect on 

microglial migration, cannabinioid receptor agonist-antagonist experiments were 

performed.  For these experiments, the CB2 antagonist SR144528 (SR2) was used at a 

concentration of 10-6M.  Treatment of primary rat microglia with the CB2-specific 

antagonist SR2 alone had no effect on the chemotactic response to Acanthamoeba 

culbertsoni conditioned medium (AcCM; 54 μg), as the number of SR2-treated cells 

migrating to AcCM was equivalent to the number vehicle-treated cells migrating to 

AcCM (Fig. 34).  CP55940 treatment alone (10-6 and 10-8M) significantly inhibited 

microglial migration to AcCM.  At equimolar concentrations (i.e., 10-6M) of antagonist 

and agonist, CP55940 inhibited macrophage migration to AcCM.  However at lower 

concentrations of agonist (i.e. 10-8M), SR2 reversed CP55940-mediated inhibition.   
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Figure 32- The CB2 Agonist O-2137 Inhibits Microglial Migration to Acanthamoeba 
Conditioned Medium, but not the CB1 Agonist ACEA.  Microglia were treated (3h) with 
cannabinoid or vehicle (VEH) (0.01% ethanol) and assessed for migration to 
Acanthamoeba (JH1) conditioned medium (2h) (JH1CM; 54 μg). Results are presented 
as the mean ± SD.  *p<0.05.  
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Figure 33-The CB2 Agonist O-2137 Inhibits Microglial Migration to 
Acanthamoeba Conditioned Medium, but not the CB1 Agonist ACEA.  
Microglia were treated (3h) with cannabinoid (10-6M) or vehicle (VEH) (0.01% 
ethanol) and assessed for migration to Acanthamoeba culbertsoni conditioned 
medium (2h) (AcCM; 54 μg). Results are presented as the mean ± SD.  *p<0.05.
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Figure 34 – The CB2 Antagonist Reverses CP55940-mediated Inhibition of 
Primary Microglial Migration to Acanthamoeba Conditioned Medium.  Primary 
rat microglial cells were pretreated (30 min) with CB2 antagonist SR2 (10-6 M) 
followed by treatment with 10-6- 10-8M CP55940 (CP) (3h).  Migration to 54 μg A. 
culbertsoni conditioned medium (AcCM) was assessed (2h). Results are presented 
as the mean ± SD. Cannabinoid (CP55940, SR2, and CP55940+SR2) treated 
groups were compared with vehicle (VEH)-treated microglia exposed to 
conditioned medium in the bottom chamber.  *p<0.05, **p<0.01.  Further 
statistical analysis using Bonferroni’s t-test compared groups treated with 
CP55940 (10-6 M) or CP55940+SR2 (10-6 M) to SR2 (10-6 M). ††† p <0.001.      
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Bonferroni’s test was performed for comparisons between treatment groups and further 

confirmed a significant difference in migration to amoebic conditioned medium between 

microglia treated with CP55940 (10-8M) and those treated with CP55940 (10-8M) and 

SR2 (10-6M).   

 These experiments were complemented with those using the CB1 antagonist 

SR141716A (SR1).  For these experiments, CB1 antagonist SR141716A (SR1) was used 

at a concentration of 10-6M.  Treatment of primary rat microglia with the CB1-specific 

antagonist SR1 alone had no effect on the chemotactic response to Acanthamoeba 

culbertsoni conditioned medium (AcCM; 54 μg), as the number of SR1-treated cells 

migrating to AcCM was equivalent to the number of vehicle-treated cells migrating to 

AcCM (Fig. 35).  As observed in the previous experiment using SR2 (Fig. 34), CP55940 

treatment alone (10-6 and 10-8M) significantly inhibited microglial migration to AcCM.  

At equimolar concentrations (i.e., 10-6M) of antagonist and agonist, CP55940 inhibited 

macrophage migration to AcCM.  However, treatment with the CB1 antagonist SR1 was 

unable to block the inhibitory effect of CP55940.   

 

Discussion 

THC, the major psychoactive component in marijuana, has been shown to alter 

the activities of macrophages and macrophage-like cells, including phagocytosis 

(Friedman et al., 1986; Lopez-Cepero et al., 1986; Tang et al., 1992; Ehrhart et al., 

2005), antigen processing (McCoy et al., 1995; McCoy et al., 1999), and production of  
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Figure 35– Pretreatment with the CB1 antagonist SR1 Does Not Alter CP55940-
Mediated Inhibition of Primary Microglial Migration to Acanthamoeba 
conditioned medium.  Primary microglia were pretreated with SR1 (30 min) 
followed by treatment with CP55940 (CP) (3h).  Migration to 54 μg A. culbertsoni 
conditioned medium (AcCM) was assessed (2h).  Results are presented as the 
mean ± SD. Cannabinoid (CP55940, SR1, and CP55940+SR1) treated groups 
were compared with vehicle (VEH)-treated microglia exposed to conditioned 
medium in the bottom chamber.  *p<0.05, **p<0.01, ***p<0.001.  Further 
statistical analysis using Bonferroni’s t-test compared groups treated with 
CP55940 (10-6 M) or CP55940+SR1 (10-6 M) to SR1 (10-6 M). ††† p <0.001 and 
†† p 0.002.      
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chemokines and cytokines (Watzl et al., 1991; Zheng et al., 1992; Puffenbarger et al., 

2000).  Recent studies indicate that this exogenous cannabinoid, as well as other 

cannabinoids, also affects the migratory activities of macrophages.  Stefano et al. (1998) 

reported that acute exposure to the endogenous cannabinoid (endocannabinoid) 

anandamide resulted in transformation of macrophages from an amoeboid and motile 

state to that of a rounded and non-motile conformation.  These investigators proposed 

that the transforming events were linked to the CBB1 receptor since the CB1-specific 

antagonist SR141716A blocked the transformation.  Sacerdote et al. (2000) demonstrated 

that in vivo and in vitro treatment of rat peritoneal macrophages with CP55940, a high 

efficacy agonist at both CB1 and CB2 receptors, resulted in decreased migration in vitro 

to the peptide formal-methionyl-leucine-phenylalanine (fMLP).  It was indicated that, 

while both the CB1 and CB2 receptors appeared to be involved in this process, the 

cannabinoid-mediated effect was linked primarily to the CB2.  The chemotactic response 

of murine macrophages to fMLP also has been shown to be decreased by cannabidiol 

(Sacerdote et al., 2005), a cannabinoid that binds weakly to CB2.  The CB2 antagonist 

SR144528 prevented this decrease, suggesting a functional linkage to this receptor.   

On the other hand, Walter et al. (2003) found that the endocannabinoid 2-

arachidonylglycerol (2-AG) triggered migration of microglia, macrophages that are 

resident in the brain, and that the CB2 was involved in this effect.  Additionally, these 

investigators and others (Jorda et al., 2002; Kishimoto et al., 2005) have demonstrated 

that THC did not induce a migratory cellular response in natural killer cells or cells of 

myeloid origin and, further, inhibited migration of these cell types to 2-AG.  Collectively, 
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these studies suggest that exogenous cannabinoids exert inhibitory effects on macrophage 

migration while endocannabinoids elicit an opposite effect.  

 Consistent with these observations, in the present study we demonstrated that 

THC inhibits the chemotactic or directed migratory response of murine peritoneal 

macrophages to RANTES, a chemokine that can signal through the chemokine receptors 

CCR1 and CCR5.  This effect was exerted on peritoneal macrophages from mice 

administered THC in vivo or on peritoneal macrophages that were exposed directly to 

THC in vitro.  In the latter context, the inhibition occurred over a wide concentration 

range (i.e., 10-6 M – 10-12 M).  These results are consistent with THC as having a direct 

effect on macrophages which results in inhibition of chemotaxis.  Indeed, scanning 

electron microscopic analysis revealed dramatic alterations in cellular morphology 

following treatment with THC, indicating that these cells had reduced migratory 

responsiveness.  Whereas vehicle-treated cells migrating to RANTES displayed 

morphological characteristics of migration including membrane ruffling and numerous 

cellular projections extending toward or into membrane pores, the cells treated with THC 

were rounded and appeared to be non-motile.   

The results obtained with THC were replicated using the high efficacy CB1/CB2 

agonist CP55940.  Treatment of murine macrophages in vitro with CP55940 resulted in 

inhibition of chemotaxis to RANTES over the same concentration range (i.e., 10-6 M – 

10-12 M) of THC.  In order to establish whether the cannabinoid-mediated inhibition was 

linked to a cannabinoid receptor, a series of experiments was performed in which 

cannabinoid receptor-selective agonists as well as cannabinoid receptor-specific 
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antagonists were used.  Treatment of macrophages in vitro with O-2137, a compound that 

exhibits high selectivity for the CB2, resulted in a robust inhibition of macrophage 

chemotaxis.  In contrast, the CB1 selective compound ACEA had a minimal effect.  In 

addition, the CB2 antagonist SR144528 blocked CP55940-mediated inhibition of 

macrophage chemotaxis while the CBB1 antagonist SR141716A had a minimal effect. 

Finally, THC was not able to inhibit the chemotactic response to RANTES of peritoneal 

macrophages obtained from CB2 knockout mice.  Collectively, the results of experiments 

in which a pharmacological approach was complemented with that using macrophages 

from CB2B  null (i.e., CB2 -/-) mice support the proposition that the CB2 is linked 

functionally to the THC-mediated inhibition of chemotaxis to RANTES.  

RANTES, for which the current International Union of Pharmacology 

nomenclature is CCL5 (Murphy, 2002), is one of many chemotactic cytokines that direct 

the migration of leukocytes to sites of infection and inflammation.  In this capacity, these 

small molecular weight proteins constitute a critical component of innate immune 

defenses.  Four subfamilies of chemokines have been identified based on the relative 

position of their N terminal cysteine residues.  All chemokines bind specific receptors 

that have seven transmembrane domains and are coupled to heterotrimeric Gi proteins, a 

feature that is shared with cannabinoid agonists.  However, binding within a chemokine 

subfamily is somewhat promiscuous. In addition, multiple chemokine receptor types have 

been identified on individual immune cells and their expression may vary in relation to 

cell differentiation and activation. These characteristics confer multiple levels of 

regulation and exquisitely sensitive responses to the chemokine/chemokine receptor 
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system.  RANTES, for example, can bind CCR1, CCR3, and CCR5, receptors that have 

specialized roles in leukocyte trafficking (Murdoch and Finn, 2000; Murphy, 2002; 

Charo et al., 2006).  Monocytes have been reported to express a variety of chemokine 

receptors, particularly CCR1, CCR2, and CCR5 (Mantovani et al., 2004).  It has been 

demonstrated also that differentiation of monocytes into tissue macrophages is associated 

with the upregulation of CCR1 and CCR5 and loss of CCR2 expression (Mantovani et 

al., 2004).  In the present study, we examined thioglycollate-elicited peritoneal 

macrophages from (B6C3)F1 and C57BL/6 mice for their CC chemokine receptor 

expression profile.  These cells were shown to express CCR1 and CCR5, receptors that 

can bind RANTES.  Thus, in the context of our experimental paradigm it is possible that 

RANTES acted through one or both receptors to induce chemotactic activity.  In turn, 

THC may have affected the functionality of one or both chemokine receptors.  Regardless 

of which of the chemokine receptors found on macrophages is functionally relevant in 

RANTES-mediated signaling, the results of this study suggest that cannabinoid activation 

of the CB2 can result in deactivation of other members of the G protein-coupled family 

such as chemokine receptors.  Further studies utilizing chemokine receptor-specific 

antagonists should serve to identify the CC receptor type that is linked to RANTES-

mediated chemotactic activity that is targeted by cannabinoids.  

 The mode by which THC and other analogs that signal through cannabinoid 

receptors to deactivate CCR1 and/or CCR5 chemokine receptor migratory responsiveness 

to RANTES remains to be defined.  THC and other cannabinoids, as highly lipophilic 

molecules, can perturb cellular membranes (Martin, 1986; Makriyannis et al., 1990; 
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Cabral and Staab, 2005).  Such perturbation could alter conformational strictures 

requisite for ligand-receptor interaction, disrupt receptor-G protein complexes, and 

disturb intracellular membranous compartments that are linked to biochemical events in 

the cascade of signal transduction.  However, as suggested by the present study, 

cannabinoids also may trans-deactivate chemokine receptors and affect their ability to 

elicit a signal transductional cascade that culminates in the chemotactic migratory 

response.  Indeed, it has been reported that members of the G protein coupled receptor 

superfamily can associate with each other, forming homodimers and heterodimers that 

results in alteration in the functionality of one of the involved receptors (Rios et al., 

2001).  Opioid receptors, for example, have been reported to interact with chemokine 

receptors to alter their function.  Grimm et al. (1998) indicated that this interaction 

resulted in trans-deactivation of chemokine receptors and that it occurred through a 

process of receptor-mediated heterologous desensitization.  Desensitization is the 

functional result of receptor phosphorylation by G protein coupled receptor kinases 

(GRKs) or other second messenager kinases (i.e., protein kinase C), which prevents 

further coupling to G proteins.  Following arrestin binding, the phosphorylated receptor 

undergoes internalization and recycling.    

In their studies, Grimm et al. (1998) demonstrated that met-enkephalin and 

morphine inhibited interleukin (IL)-8-induced chemotaxis of human neutrophils and 

macrophage inflammatory protein (MIP)-1α, RANTES, and monocyte chemoattractant 

protein (MCP)-1-mediated chemotaxis of human monocytes.  This inhibition was 

indicated as mediated by δ- and μ-opioid receptors, the activation of which led to 
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phosphorylation of the chemokine receptors CXCR1 and CXCR2 resulting in 

heterologous desensitization.  Rogers et al. (2000) reported that activation of opioid and 

chemokine receptors could lead to reciprocal down-regulation of leukocyte migratory 

activities.  These observations have been extended using a number of experimental 

paradigms (Szabo and Rogers, 2001; Szabo et al., 2001; Szabo et al., 2002; Suzuki et al., 

2003; Zhang et al., 2003).  Indeed, it has been proposed that cross-desensitization of 

chemokine receptors by opioids represents a significant element in opioid-mediated 

immunosuppression (Zhang et al., 2003).  The process of heterologous desensitization 

may also apply to cannabinoid receptors, and these studies may serve to elucidate, in part, 

the mechanism of cannabinoid-mediated immunosuppression. Ghosh et al. (2006) 

reported that the CB1/CB2 agonist CP55940, as well as the CBB2-selective agonist JW-015, 

caused significant inhibition of chemokine CXCL12-induced chemotaxis of CD4+ and 

CD8+ T lymphocytes.  These investigators also found that these cannabinoids inhibited 

CXCL12 induced chemotaxis and transendothelial migration of Jurkat T cells. Rios et al. 

(2006) reported recently that the μ opioid receptor also interacts with the CB1B  to affect a 

reciprocal inhibition of receptor signaling and receptor-induced neuritogenesis.  

In the present study, we propose that heterologous desensitization may articulate a 

mode of action by which cannabinoids mediate inhibition of the murine peritoneal 

macrophage chemotactic response to RANTES.  Thus, in order to obtain initial insight as 

to the process by which THC and other cannabinoids cross-deactivate this macrophage 

activity, a multiprobe RNase protection assay was performed to assess for levels of CC 

chemokine receptor mRNAs. THC over a concentration range of 10-6M to 10-12M had no 
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effect on macrophage mRNA levels of CCR1 and CCR5.  Likewise, treatment with other 

cannabinoid receptor agonists and antagonists including CP55940, SR1 and SR2 (10-6M) 

had no effect on CCR1 or CCR5 mRNA as assessed by multiprobe RNase protection 

assay.  These results are consistent with THC-mediated inhibition of the chemotactic 

process as occurring at a level of regulation other than gene expression of the cognate 

receptors at the mRNA level.  Immunoprecipitation experiments followed by Western 

blot analysis using a primary antibody specific for phosphorylated serine residues were 

performed to assess for effects of cannabinoids on protein expression and 

phosphorylation of CCR5, which notably undergoes serine phosphorylation.  Stimulation 

with the cognate ligand RANTES induced CCR5 phosphorylation as compared to cells 

treated with vehicle.  Further, treatment with CP55940 (10-6M) resulted in the induction 

of CCR5 phosphorylation.  The level of CCR5 phosphorylation induced by CP55940 was 

less than the level of phosphorylation following stimulation with RANTES, results which 

are consistent with reports by Chen et al. (2004) who demonstrated that treatment with μ-

opioid receptor agonist DAMGO induced CCR5 phosphorylation but to a lesser extent 

than RANTES. 

Cannabinoids can also affect migration to chemotactic molecules other than 

chemokines including bioactive lipids such as 2-AG.  2-Arachidonoylglycerol (2-AG) is 

an endogenous cannabinoid (endocannabinoid) that is a native ligand to cannabinoid 

receptors in the CNS and in the periphery.  Formation of 2-AG occurs rapidly through the 

cleavage of membrane phospholipids by phospholipases and diacylglycerol lipase.  It is 

produced by numerous cell types under a wide variety of stimulatory conditions including 
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LPS stimulation of rat macrophages (DiMarzo et al., 1999), ATP stimulation of mouse 

microglia (Witting et al., 2004), cholera toxin-treated mouse small intestine (Izzo et al., 

2003), macrophage colony stimulating factor treated rat microglia (Carrier et al., 2004), 

and mouse brain following traumatic brain injury (Panikashvili et al., 2001).  Indeed, it 

has been proposed that 2-AG plays a physiological role in the regulation of 

neurotransmitter release (Sugiura and Waku, 2000), the cardiovascular system (reviewed 

in Sugiura et al., 2006), and the proliferation and invasion of certain types of cancer cells 

(reviewed in Sugiura et al., 2006).  It seems very likely, therefore, that 2-AG plays an 

essential role in the regulation of a variety of biological systems.   

Accumulating evidence also suggests that 2-AG is involved in 

immunomodulation.  Kishimoto et al. (2004) reported that 2-AG induced production of 

interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), and that this 

effect was linked to CB2.  Further, addition of LPS to 2-AG synergistically augmented 

IL-8 and MCP-1 production.  2-AG has also been shown to modulate other activities 

associated with the inflammatory response inducing changes in cellular morphology 

through rapid actin rearrangement (Gokoh et al., 2005), enhancing cellular adhesion 

(Gokoh et al., 2005), and stimulating cell migration.   Walter et al. (2003) demonstrated 

that 2-AG induced migration in microglia, and that this migration was linked to activation 

of CB2.  Further, localization of CB2 to the leading edge of lamellipodia implicated a role 

for CB2 in migration (Walter et al., 2003).  Additional studies (Jorda et al., 2002; 

Kishimoto et al., 2005) demonstrated that 2-AG induces migration in multiple immune 

cell types and that treatment with THC can inhibit this migration.  It has recently been 
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proposed by Cabral et al. (2007) that cannabinoids alter macrophage migration through 

activation of CB2, with endocannabinoids such as 2-AG exerting a stimulatory effect and 

exogenous cannabinoids eliciting an opposite, inhibitory effect.  Endogenous 

cannabinoids such as 2-AG, signaling through CB2, may stimulate or support an 

inflammatory response through the increase in cell adhesion and migration, the activation 

of mitogen-activated protein kinase (MAP kinase), induction of [Ca2+] release, and 

upregulation of chemokine production whereas other CB2 ligands may block these 

effects.  This block could be the result of competition for receptor binding involving 

limiting factors such as ligand accessibility (generation and short half-life of endogenous 

ligands) or ligand affinity.   

As a critical component in innate immunity, macrophages play a key role in 

recognition and clearance of bacterial, protozoan, and viral pathogens.  Integral to this 

recognition process are a host of cellular receptors.  For example, pattern recognition 

receptors recognize pathogen associated molecular pattern (PAMPs), which include 

bacterial carbohydrate moieties like mannose or LPS; bacterial, viral, protozoan RNA or 

DNA; and viral glycoproteins.  Host cells also express a class of G-protein coupled 

receptors designated Protease-activated receptors (PARs1-4) that can be activated by 

immune cell-derived or microorganism-derived serine proteases (Steinhoff et al., 2005; 

Traynelis and Trejo, 2007).  PAR1and PAR2 can coupled to Gαq, Gαi, Gα12/13, and Gβγ 

and induce multiple signal transduction cascades. PAR1/2 activation induces protein 

kinase C (PKC) and MAP kinase activation, Rho/Rac signaling, mobilization of 

intracellular calcium [Ca2+] through activation of phospholipase C (PLC), and activation 
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of receptor tyrosine kinases (RTKs) (Traynelis and Trejo, 2007).  Activation of these 

signaling networks results in alterations in cell shape, adhesion, secretion of 

inflammatory mediators, and motility.  PAR1 is expressed in a variety of cells including 

platelets, endothelial cells, CD8+ T cells, monocytes, migroglia, astrocytes, neurons, 

mast cells, and certain tumor cells (reviewed in Steinhoff et al., 2005).  PAR2 is 

expressed by immune cells including dendritic cells, eosinophils, macrophages, and 

neutrophils (Miike et al., 2001; Colognato et al., 2003; Howells et al., 1997; Moormann 

et al., 2006).  Serine proteases and PARs have been implicated in immune and 

inflammatory regulation; however, the majority of the data to date is limited to PAR 

modulation of cell adhesion molecules, chemokine/cytokine production, and cell 

migration.  Colotta et al. (1994) reported that thrombin, acting through PAR1, induced 

expression of MCP-1 by human peripheral blood mononuclear cells (PBMC). 

Additionally, treatment of endothelial cells with thrombin, which signals through PAR1, 

induced IL-8, E-selectin (Kaplanski et al., 1997), intercellular adhesion molecule-1 

(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression (Kaplanski et 

al., 1998).  PAR1 activation with thrombin has also been shown to induce human 

neutrophil chemotaxis (Mariano-Oliveira et al., 2007).  Morris et al. (2006) demonstrated 

that PAR2 plays a critical role in breast cancer cell migration and invasion.   

Many bacteria and amebae that are pathogenic in humans produce serine 

proteases.  It is reasonable, therefore, to postulate that these pathogen-derived proteases 

may trigger specific immune or inflammatory responses through direct interaction with 

host cell PARs.  Amebae of the genus Acanthamoeba have been shown to secrete 
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multiple serine, cysteine, and matrix metalloproteases that have been implicated in the 

virulence of the pathogen (Marciano-Cabral and Cabral, 2003).  These proteases are 

thought to play a role in tissue destruction and pathogen invasion, and are capable of 

degrading host IgA and IgG, multiple extracellular matrix components including types I 

and III collagen, and serum proteins hemoglobin and fibrinogen (Kong et al., 2000; Mitro 

et al., 1994; Cho et al., 2000; and Sissons et al., 2006).  In the present study we 

demonstrated that peritoneal macrophages migrate towards media conditioned with two 

strains of Acanthamoeba (Acanthamoeba culbertsoni and Acanthamoeba JH1, which 

contains intracellular gram negative bacteria).  Acanthamoeba conditioned medium has 

been shown to contain a variety of proteases including serine and metalloproteases 

(Sissons et al., 2006).  The chemoattractants in the amoebic conditioned medium seem to 

be directly produced by the amoeba, as there was no major difference in cell migration to 

the conditioned medium derived from culture with Acathamoeba culbertsoni or from 

medium cultured with Acanthamoeba JH1 harboring intracellular bacteria.  We also 

found that THC inhibits the chemotactic response of murine peritoneal macrophages to 

Acanthamoeba conditioned medium. This inhibitory effect was exerted on peritoneal 

macrophages from mice administered THC in vivo or on peritoneal macrophages that 

were exposed directly to THC in vitro.  Scanning electron microscopic analysis revealed 

dramatic alterations in macrophage morphology following treatment with THC, 

indicating that these cells had reduced migratory responsiveness similar to previous 

results obtained using RANTES as the chemoattractant.  Vehicle-treated cells migrating 

to Acanthamoeba conditioned medium displayed morphological characteristics of 
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migration including membrane ruffling and numerous cellular projections extending 

toward or into membrane pores; however, as demonstrated in previous studies the 

macrophages treated with THC appeared to be rounded and non-motile.   

 We then employed a strategy similar to the one previously utilized in the 

RANTES studies to determine whether a cannabinoid receptor was involved in inhibition 

of macrophage migration to amoebic conditioned medium.  Experiments were repeated 

using the high efficacy CB1/CB2 agonist CP55940.   Treatment of peritoneal 

macrophages in vitro with CP55940 resulted in significant inhibition of migration to 

Acanthamoeba conditioned medium.  In addition, we performed experiments using 

compounds exhibiting selective high affinity binding to the CB1 or the CB2 prior to 

assessment of the chemotactic response to amoebic conditioned medium (ACEA and O-

2137, respectively).  Treatment of macrophages with the selective CB2 ligand O-2137 

resulted in significant concentration-related inhibition in the migration to Acanthamoeba 

conditioned medium.  The CB1 specific ligand ACEA had no effect on peritoneal 

macrophage migration to Acanthamoeba conditioned medium.  Further experiments 

employing cannabinoid receptor antagonists used in concert with CP55940 were 

performed.  The CB2 antagonist SR144528 blocked CP55940-mediated inhibition of 

macrophage migration to amoebic conditioned medium while the CB1 antagonist 

SR141716A had a minimal effect.  Together, these results imply that CBB2 is linked to 

cannabinoid-mediated inhibition of macrophage migration to Acanthamoeba conditioned 

medium.   
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 For many years the brain was believed to be an immune privileged site, however 

accumulating evidence suggests that, like the periphery, the CNS is under constant 

immune surveillance.  Microglia are a resident population of cells in the CNS that are 

morphologically, phenotypically, and functionally related to macrophages (Aloisi, 2001; 

Gehrmann et al., 1995). Upon activation by inflammatory or infectious stimuli, these 

cells undergo proliferation and functional maturation with alterations in receptor 

expression and the production of inflammatory mediators like cytokines, chemokines, 

and reactive oxygen species (Aloisi, 2001).  Dysregulation of this response, or chronic 

activation, has been implicated in neuropathological diseases like Multipe Sclerosis 

(MS), Alzheimer’s disease (AD), Parkinson’s disease, and Acquired Immune Deficiency 

(AIDS) dementia (reviewed in Bajetto et al., 2002).   

 A signature activity of activated microglia is migration to sites of inflammation or 

infection.  Using a mouse model of Acanthamoeba infection in the CNS, Cabral et al. 

(2007) demonstrated the involvement of macrophage-like (microglia) cells in the 

formation of immune cell granulomas surrounding Acanthamoeba culbertsoni cysts.  

Granulomas are believed to sequester pathogens preventing further dissemination.  Mice 

administered THC in vivo experienced higher rates of mortality following infection with 

the amoebae which may be due, in part, to the observed inability to form granulomas.  

We postulated that the absence of granulomas following THC might be the consequence 

of a cannabinoid-mediated inhibition of microglial migration.  In the final part of the 

study, we utilized an in vitro migration system with primary rat microglial cells and 

Acanthamoeba conditioned medium to model an in vivo infection and assess the effect of 
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THC on microglial migration.  Treatment of primary neonatal rat microglia with THC or 

CP55940 (10-6-10-8M) resulted in significant concentration-related inhibition of 

microglial migration to Acanthamoeba conditioned medium.   

Carlisle and Cabral (2002) reported that microglia constitutively express very low 

levels of CB1, whereas CBB2 is expressed differentially in relation to cell activation state.  

CB2 is expressed at high levels in microglia when they are in responsive or primed states.  

These activation states are characterized by differential gene expression and certain 

functional activities.  In responsive and primed states macrophages and microglia are 

capable of chemotaxis, phagocytosis, and antigen presentation, activities that correlate 

with early inflammatory responses.  We performed migration assays using compounds 

exhibiting selective binding to the CB1 or the CB2 prior to assessment of the chemotactic 

response to amoebic conditioned medium.  Treatment of macrophages with the CB2 

ligand O-2137 resulted in significant concentration-related inhibition in the migration to 

Acanthamoeba conditioned medium; however, the CB1 specific ligand ACEA had no 

effect on microglial migration to Acanthamoeba conditioned medium.  Further 

experiments using CB1 and CB2 specific antagonists in combination with CP55940 were 

also performed.  Treatment with the CB2 antagonist SR144528 blocked CP55940-

mediated inhibition of microglial migration to amoebic conditioned medium while the 

CB1 antagonist SR141716A had no effect.  These data suggest cannabinoid-mediated 

inhibition of microglial migration to Acanthamoeba conditioned medium is linked to the 

CB2 cannabinoid receptor, which is consistent with the known cannabinoid receptor 

expression profile of microglia, as well as the results from previous models used in our 
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studies.  Furthermore, since migration can be elicited by protease activation of PARs on 

microglia, it is possible that THC-mediated inhibition of the chemotactic response to 

amoebic conditioned medium may be due to CB2 “cross-talk” with PARs.  Studies to 

establish such a functional linkage should serve to clarify whether the CB2 receptor can 

“cross-communicate” with a diverse array of G-protein coupled receptors so as to 

modulate responsiveness by macrophages and macrophage-like cells.   

 In summary, we have demonstrated that THC and other exogenous cannabinoids 

that activate the CB2 inhibit murine peritoneal macrophage chemotaxis to 

RANTES/CCL5.  This inhibitory effect was linked functionally to the CBB2 receptor.  

Furthermore, since this chemokine serves as a ligand for CCR1 and CCR5, these results 

suggest that activation of the CB2 leads to trans-deactivation of these G protein-coupled 

receptors of the CC chemokine subfamily that have specialized roles in leukocyte 

trafficking.  Thus, as has been suggested for opioid receptors, CB2 “cross-talk” with 

chemokine receptors may constitute an integrative component of a network of 

intercommunicating G protein-coupled receptors that regulate immune responses.  In 

addition, we have demonstrated that THC and other exogenous cannabinoids that activate 

the CB2 inhibit murine peritoneal macrophage and rat primary microglial chemotaxis to 

Acanthamoeba conditioned medium.  Cannabinoids, as acting through cannabinoid 

receptors, may “cross-communicate” with a diverse array of G-protein coupled receptors, 

thereby affecting activation of receptors such as CCR5 and PARs.  Although much more 

work needs to be done to link the chemotactic response of macrophages and microglia to 

amoebic conditioned medium to PAR activation and to establish whether heterologous 
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desensitization is occurring between CB2 and PARs, this study provides initial insight to 

the mechanism of THC-mediated immunosuppression in CNS infections with amoeba.     

We also have shown that the endogenous cannabinoid, 2-AG induces migration of 

peritoneal macrophages and that this effect can be inhibited by the exogenous 

cannabinoid, THC.  We have proposed a model in which endogenous cannabinoids 

signaling through CB2 exert a positive or stimulatory effect on the inflammatory 

response, whereas exogenous cannabinoids elicit an inhibitory effect.  These studies 

demonstrate a critical role for CB2 in immunoregulation and inflammation in the CNS 

and the periphery.   
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